Precise Molecular Engineering of Type I Photosensitizers with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Killing of Multidrug-Resistant Bacteria.

Adv Sci (Weinh)

Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.

Published: February 2022

Multidrug resistance (MDR) bacteria pose a serious threat to human health. The development of alternative treatment modalities and therapeutic agents for treating MDR bacteria-caused infections remains a global challenge. Herein, a series of near-infrared (NIR) anion-π photosensitizers featuring aggregation-induced emission (AIE-PSs) are rationally designed and successfully developed for broad-spectrum MDR bacteria eradication. Due to the strong intramolecular charge transfer (ICT) and enhanced highly efficient intersystem crossing (ISC), these electron-rich anion-π AIE-PSs show boosted type I reactive oxygen species (ROS) generation capability involving hydroxyl radicals and superoxide anion radicals, and up to 99% photodynamic killing efficacy is achieved for both Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug resistant Escherichia coli (MDR E. coli) under a low dose white light irradiation (16 mW cm ). In vivo experiments confirm that one of these AIE-PSs exhibit excellent therapeutic performance in curing MRSA or MDR E. coli-infected wounds with negligible side-effects. The study would thus provide useful guidance for the rational design of high-performance type I AIE-PSs to overcome antibiotic resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844491PMC
http://dx.doi.org/10.1002/advs.202104079DOI Listing

Publication Analysis

Top Keywords

aggregation-induced emission
8
photodynamic killing
8
mdr bacteria
8
mdr
5
precise molecular
4
molecular engineering
4
engineering type
4
type photosensitizers
4
photosensitizers near-infrared
4
near-infrared aggregation-induced
4

Similar Publications

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (Φ) and large luminescence dissymmetry factors (g). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material.

View Article and Find Full Text PDF

Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission.

Molecules

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

A pyridine-fused triazapentalene shows weak fluorescence in solution and is readily accessible via nitrene-mediated cyclization. In this study, a modified Cadogan reaction was used to synthesize . Palladium-catalyzed reactions have been used as post-functionalization methods.

View Article and Find Full Text PDF

Bioorthogonal strategy-triggered In situ co-activation of aggregation-induced emission photosensitizers and chemotherapeutic prodrugs for boosting synergistic chemo-photodynamic-immunotherapy.

Biomaterials

January 2025

State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China. Electronic address:

In situ activation of prodrugs or photosensitizers is a promising strategy for specifically killing tumor cells while avoiding toxic side effects. Herein, we originally develop a bioorthogonally activatable prodrug and pro-photosensitizer system to synchronously yield an aggregation-induced emission (AIE) photosensitizer and a chemotherapeutic drug for synergistic chemo-photodynamic-immunotherapy of tumors. By employing molecular engineering strategy, we rationally design a family of tetrazine-functionalized tetraphenylene-based photosensitizers, one of which (named TzPS5) exhibits a high turn-on ratio, a NIR emission, a typical AIE character, and an excellent ROS generation efficiency upon bioorthogonal-activation.

View Article and Find Full Text PDF

This study addresses the critical issue of irreversible oxidation in hypochlorite (ClO⁻) sensing by a phenothiazine-based compound, which typically leads to the probe's degradation and loss of functionality. We introduce a novel fluorescence probe, (2-(5-(10 H-phenothiazin-10-yl)thiophen-2-yl)-1 H-benzo[d]imidazol-6-yl)(phenyl)methanone (PTH-BP), specifically designed to enhance ClO⁻ detection efficiency. PTH-BP exhibits strong aggregation-induced emission (AIE), emitting deep orange fluorescence at 620 nm with a large Stokes shift of 195 nm, and achieves an impressive detection limit of 1 nM in ACN/PBS buffer solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!