Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of , and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8677937 | PMC |
http://dx.doi.org/10.3389/fspor.2021.685845 | DOI Listing |
Cureus
December 2024
Vascular Surgery, Carle Foundation Hospital, Urbana, USA.
Chronic mesenteric ischemia (CMI) is a progressive condition that primarily affects the elderly, causing chronic abdominal pain and malnutrition. Timely treatment is essential to prevent further deconditioning or bowel ischemia. Surgical repair options include both endovascular and open procedures.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Department of Cardiovascular & Thoracic Surgery, Sandra Atlas Bass Heart Hospital at North Shore University Hospital, Northwell Health, 300 Community Drive, 1 DSU, Manhasset, NY, 11030, USA.
Purpose Of Review: This article discusses a tailored approach to managing cardiogenic shock and temporary mechanical circulatory support (tMCS). We also outline specific mobilization strategies for patients with different tMCS devices and configurations, which can be enabled by this tailored approach to cardiogenic shock management.
Recent Findings: Safe and effective mobilization of patients with cardiogenic shock receiving tMCS can be accomplished.
J Rehabil Assist Technol Eng
January 2025
Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Sydney, Australia.
Spinal cord injury and stroke are neurological disorders that lead to aerobic deconditioning and increased likelihood of cardiovascular disease. Sessions of at least 20 minutes of moderate-to-vigorous intensity exercise is recommended but decreased mobility limits engagement in such exercise. The aim of the study was to assess whether individuals can achieve exercise recommendations with the assistance of an end-effector robot assisted gait trainer (E-RAGT).
View Article and Find Full Text PDFJ Crohns Colitis
January 2025
Professor of Gastroenterology, Translational Medical Sciences, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham; NIHR Nottingham Biomedical Research Centre, Nottingham.
Background & Objective: IBD fatigue aetiology is poorly understood. This study quantified body composition and physical function alongside proton magnetic resonance imaging (1H MRI) and spectroscopy (31P MRS) measures of organ structure and function in quiescent Crohn's Disease patients (CD) and healthy volunteers (HV), to identify a physiological basis for IBD fatigue.
Methods: Body composition was determined using DEXA and 1H MRI.
Background: Unexplained exertional dyspnoea without significant elevation of natriuretic peptides is common. One of the causes might be early heart failure with preserved ejection fraction (HFpEF).
Aims: This study aimed to characterize patients with exertional dyspnoea and normal/near-to-normal N-terminal pro-brain natriuretic peptide (NT-proBNP) levels with regard to early stages of HFpEF and non-cardiac causes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!