Improving the antibacterial activity to avoid infections and keeping the biocompatibility at a safe level of HAp-based materials is highly important for biomedical applications. In this work, we investigate the antibacterial activity of 2.5Ag/2.5Mg co-doped HAp and 2.5Ag/2.5Zn co-doped HAp toward bacteria. Moreover, their biocompatibility for osteoblastic cells (MC3T3-E1 cells) was also evaluated. The physical properties were characterized with necessary characterization tools such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller. Both 2.5Ag/2.5Mg and 2.5Ag/2.5Zn co-doped HAp consist of hydroxyapatite (HAp) and beta calcium triphosphate (β-TCP) phases. The antibacterial test reveals that 2.5Ag/2.5Mg co-doped HAp or 2.5Ag/2.5Zn co-doped HAp has an outstanding antibacterial activity with a killing rate of 99 ± 1%. More importantly, the cell viability for osteoblast cells with 2.5Ag/2.5Mg and 2.5Ag/2.5Zn co-doped HAp promotes the proliferation much more effectively than 2.5Ag-doped HAp or 5Ag-doped HAp.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675168 | PMC |
http://dx.doi.org/10.1021/acsomega.1c05921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!