Alterations in the expression and/or activity of brain G-protein-coupled receptors (GPCRs) such as dopamine DR, DR, DR, and DR, vasopressin VR, and serotonin 5-HTR are noted in various neurodegenerative diseases (NDDs). Since studies have indicated that flavonoids can target brain GPCRs and provide neuroprotection via inhibition of monoamine oxidases (hMAOs), our study explored the functional role of kurarinone, an abundant lavandulated flavonoid in , on dopamine receptor subtypes, VR, 5-HTR, and hMAOs. Radioligand binding assays revealed considerable binding of kurarinone on DR, DR, and DR. Functional GPCR assays unfolded the compound's antagonist behavior on DR (IC 42.1 ± 0.35 μM) and agonist effect on DR and DR (EC 22.4 ± 3.46 and 71.3 ± 4.94 μM, respectively). Kurarinone was found to inhibit hMAO isoenzymes in a modest and nonspecific manner. Molecular docking displayed low binding energies during the intermolecular interactions of kurarinone with the key residues of the deep orthosteric binding pocket and the extracellular loops of DR, DR, and DR, validating substantial binding affinities to these prime targets. With appreciable DR and DR agonism and DR antagonism, kurarinone might be a potential compound that can alleviate clinical symptoms of Parkinson's disease and other NDDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674921PMC
http://dx.doi.org/10.1021/acsomega.1c04109DOI Listing

Publication Analysis

Top Keywords

dopamine receptor
8
kurarinone
5
binding
5
characterization kurarinone
4
kurarinone dopamine
4
receptor antagonist
4
antagonist receptor
4
receptor agonist
4
agonist alterations
4
alterations expression
4

Similar Publications

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Dopaminergic system gains importance in homeostatic sleep regulation, but the role of different dopamine receptors is not well-defined. 72 h rat electrocorticogram and sleep recordings were made after single application of dopaminergic drugs in clinical use or at least underwent clinical trials. The non-selective agonist apomorphine evoked short pharmacological sleep deprivation with intense wakefulness followed by pronounced sleep rebound.

View Article and Find Full Text PDF

Introduction: Droperidol is a dopamine-2 receptor antagonist in the class of butyrophenone antipsychotics with antiemetic, sedative, analgesic, and anxiolytic properties. In the postoperative setting, droperidol provides an opioid sparing effect and decreases nausea/vomiting. Another butyrophenone antipsychotic, haloperidol, has been shown to reduce morphine milliequivalents (MME) administered when used for abdominal pain in the emergency department (ED).

View Article and Find Full Text PDF

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!