Diagnostic value of dynamic magnetic resonance imaging of temporomandibular joint dysfunction.

Eur J Radiol Open

Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.

Published: December 2021

Background: To estimate the diagnostic value of dynamic magnetic resonance imaging (MRI) for the assessment of the temporomandibular joint (TMJ) compared to standard static MRI sequences in patients with TMJ dysfunction (TMD).

Methods And Materials: This retrospective study included 71 patients with clinical diagnose of TMD. We acquired 5 static T1- and T2-weighted sequences in parasagittal and paracoronal views and one dynamic sequence (trueFISP) in parasagittal view for each TMJ. Image analysis included evaluation of morphology and function of intra-articular structures and rating of the dynamic images as more, equally, or less informative compared to static MRI sequences.

Results: Mean age was 35.0 ± 14.7 years and 50/71 (70.4%) were female. 127/142 (89.4%) TMJs were of diagnostic quality. 42/127 (33.1%) TMJs showed no disc displacement (DD), 56 (44.1%) had DD with disc reduction (DDwR), and 29 (22.8%) had DD without disc reduction (DDwoR). In 38/127 (29.9%) TMJs, dynamic images were rated "more informative", in 84/127 (66.2%) "equally informative", and in 5/127 (3.9%) "less informative" compared to solely static images. Overall, 27/71 (38.0%) patients benefited from additional dynamic sequences compared to solely static images. Dynamic images were "more informative" in TMJs with DDwR (23/56 [41.1%], p < 0.001) and in TMJs with DDwoR (13/29 [44.8%], p = 0.007), while it had no beneficial value for TMJ without DD. For evaluation of joint effusion, static T2-weighted images were rated better in 102/127 (80.3%) TMJs compared to dynamic images (<0.001).

Conclusion: Dynamic MRI sequences are beneficial for the evaluation of morphology and function of the TMJ compared to static sequences, especially in patients with temporomandibular disc displacement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648939PMC
http://dx.doi.org/10.1016/j.ejro.2021.100390DOI Listing

Publication Analysis

Top Keywords

dynamic images
12
diagnostic dynamic
8
dynamic magnetic
8
magnetic resonance
8
resonance imaging
8
temporomandibular joint
8
static mri
8
disc reduction
8
"more informative"
8
compared solely
8

Similar Publications

Analysis of the hemodynamic impact of coronary plaque morphology in mild coronary artery stenosis.

Comput Methods Programs Biomed

January 2025

Department of Mechanics & Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park / Yibin Istitute of Industrial Technology, Yibin 644000, China. Electronic address:

Objectives: As is well known, plaque morphology plays an important role in the hemodynamics of stenotic coronary arteries, thus their clinic outcomes. However, so far, there has been no research on how the cross-sectional shape of a stenotic lumen affects its hemodynamics. Therefore, this study aims to explore the impact of plaque cross-sectional shape on coronary hemodynamics under mild or moderate stenosis conditions (diameter stenosis degree ≤50 %).

View Article and Find Full Text PDF

Dynamic molecular architecture of the synaptonemal complex.

Sci Adv

January 2025

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.

During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups.

View Article and Find Full Text PDF

CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.

Neuroinformatics

January 2025

Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.

Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost.

View Article and Find Full Text PDF

Spin Hall nano-oscillators convert DC to magnetic auto-oscillations in the microwave regime. Current research on these devices is dedicated to creating next-generation energy-efficient hardware for communication technologies. Despite intensive research on magnetic auto-oscillations within the past decade, the nanoscale mapping of those dynamics remained a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!