A small granule starch from sand rice () was subjected to heat-moisture treatment (HMT) at different moisture contents (MCs,15%-30%). With MC≤20%, a higher MC resulted in increases in the starch orders (i.e., short-range and crystalline structure) with unchanged granule morphology. Nonetheless, a further elevated MC (>20%) gradually destroyed the granule morphology and starch orders. Also, HMT gradually vanished the lamellar structure as MC increased during HMT. These structural evolutions in HMT-modified starch resulted in greater thermal stability, higher pasting temperature, lower pasting viscosity and weakened digestibility. Particularly, HMT applied directly in sand rice starch at 20% MC obtained the highest amount of SDS and RS (23.6%), which was 2.2-fold higher than that of native starch. Therefore, the small granule sand rice starch can be modulated by HMT through controlled MC to expand their application range in food production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645719 | PMC |
http://dx.doi.org/10.1002/fsn3.2622 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!