In 2020, Council Directive 2005/94/EC required EU Member States (MSs) to carry out surveillance for avian influenza (AI) in poultry and wild birds and notify the results to the responsible authority. Based on this, MSs, Iceland, Norway, Switzerland and the United Kingdom implemented ongoing surveillance programmes to monitor incursions of AI viruses in poultry and wild birds. EFSA received a mandate from the European Commission to collate, validate, analyse and summarise the data resulting from the avian influenza surveillance programmes in an annual report. This is the second such report produced using data directly submitted to EFSA by MSs. This report summarises the results of the surveillance activities carried out in poultry and wild birds in 2020. Overall, 24,768 poultry establishments (PEs) were sampled, of which 46 were seropositive for H5 virus strains and seven for H7 strains. Seropositive PEs were found in nine MSs (Belgium, Denmark, Finland, France, Italy, the Netherlands, Poland, Spain and Sweden) and the United Kingdom. As per previous years, the highest percentages of seropositive PEs were found in establishments raising waterfowl game birds and breeding geese. Out of the 53 PEs with positive serological tests for H5/H7, seven tested positive in polymerase chain reaction (PCR) or virology for H5/H7 virus strains: six for Low Pathogenic Avian Influenza (LPAI) and one for Highly Pathogenic Avian Influenza (HPAI). In addition, 13 countries also reported PCR results from 748 PEs which did not correspond to the follow-up testing of a positive serology event (e.g. in some PEs, PCR tests were used for screening). Twenty-five of these PEs were found positive for AI viral RNA. These positive PEs were located in Bulgaria, Estonia, Germany, Romania and Slovakia. A total of 18,968 wild birds were sampled, with 878 birds testing positive to HPAI virus. Fourteen countries reported HPAI-positive wild birds, with all HPAI strains identified as H5. Most positive birds were infected with H5N8, with a smaller number of N1, N3, N5 and unidentified NA subtypes. In addition, there were 317 birds testing positive for LPAI H5 or H7 virus and 429 birds testing positive for non-H5/H7 AI virus, reported by 31 countries. The surveillance findings for poultry and wild birds for 2020 are discussed in relation to the current knowledge of the epidemiology of AI in Europe, in particular the H5N8 epidemic which has been identified late 2020.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647014 | PMC |
http://dx.doi.org/10.2903/j.efsa.2021.6953 | DOI Listing |
J Math Biol
January 2025
School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, People's Republic of China.
Wild birds are one of the main natural reservoirs for avian influenza viruses, and their migratory behavior significantly influences the transmission of avian influenza. To better describe the migratory behavior of wild birds, a system of reaction-advection-diffusion equations is developed to characterize the interactions among wild birds, poultry, and humans. By the next-generation operator, the basic reproduction number of the model is formulated.
View Article and Find Full Text PDFJ Virol
January 2025
Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Center for Influenza and Emerging Diseases, University of Missouri, Columbia, MO 652011, USA.
Influenza A viruses (IAVs) pose a major public health threat due to their wide host range and pandemic potential. Pigs have been proposed as "mixing vessels" for avian, swine, and human IAVs, significantly contributing to influenza ecology. In the United States, IAVs are enzootic in commercial swine farming operations, with numerous genetic and antigenic IAV variants having emerged in the past two decades.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China.
The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Biodiversity Studies and Bioeducation, University of Lodz, Faculty of Biology and Environmental Protection, Banacha 1/3, Lodz 90-237, Poland.
There is a growing body of evidence that urbanization can affect body condition and immune function in wild birds, although these effects may be complex and taxa-specific. Here, we assessed the effects of urbanization on body condition (size-corrected body mass and haemoglobin concentration) and innate immune defences (haemolysis-haemagglutination assay, haptoglobin concentration and bacterial killing assay) in 136 Eurasian coots () from three urban and three non-urban populations across Poland. We also quantified the heterophil to lymphocyte ratio to control for the potential effect of physiological stress on immune defences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!