Water-use efficiency (WUE), weighing the balance between plant transpiration and growth, is a key characteristic of ecosystem functioning and a component of tree drought resistance. Seasonal dynamics of tree-level WUE and its connections with drought variability have not been previously explored in sky-island montane forests. We investigated whole-tree transpiration and stem growth of bristlecone () and limber pine () within a high-elevation stand in central-eastern Nevada, United States, using sub-hourly measurements over 5 years (2013-2017). A moderate drought was generally observed early in the growing season, whereas interannual variability of summer rains determined drought levels between years, i.e., reducing drought stress in 2013-2014 while enhancing it in 2015-2017. Transpiration and basal area increment (BAI) of both pines were coupled throughout June-July, resulting in a high but relatively constant early season WUE. In contrast, both pines showed high interannual plasticity in late-season WUE, with a predominant role of stem growth in driving WUE. Overall, bristlecone pine was characterized by a lower WUE compared to limber pine. Dry or wet episodes in the late growing season overrode species differences. Our results suggested thresholds of vapor pressure deficit and soil moisture that would lead to opposite responses of WUE to late-season dry or wet conditions. These findings provide novel insights and clarify potential mechanisms modulating tree-level WUE in sky-island ecosystems of semi-arid regions, thereby helping land managers to design appropriate science-based strategies and reduce uncertainties associated with the impact of future climatic changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8678526 | PMC |
http://dx.doi.org/10.3389/fpls.2021.787297 | DOI Listing |
J Exp Bot
January 2025
DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France.
Phenotypic plasticity can contribute to crop adaptation to challenging environments. Plasticity indices are potentially useful to identify the genetic basis of crop phenotypic plasticity. Numerous methods exist to measure phenotypic plasticity.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Urban Water Systems Engineering, School of Environmental Science and Engineering, Tianjin University, Room 604, 59 Building, #135 Yaguan Road, Haihe Education Park, Tianjin, China. Electronic address:
Providing different grades of water is a promising solution to address the challenges of urban water supply, including water quality, quantity, and energy consumption. However, quantifying the effectiveness of this strategy and understanding its economic, environmental, and social impacts remain significant challenges. This study introduces a simulation-based method to predict household water use and evaluate the applicability and sustainability of the water supply system.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Energy and Power Engineering, Xihua University, No. 9999 Hongguang Street, Chengdu, 610039, Sichuan Province, China.
Analysis of crop water requirement and its influencing factors are important for optimal allocation of water resources. However, research on variations of climatic factors and their contribution to wheat water requirement in Xinjiang is insufficient. In our study, daily meteorological data during 1961‒2017 in Xinjiang was collected.
View Article and Find Full Text PDFJ Nutr
January 2025
State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Cultured meat technology represents an innovative food production approach that enables the large-scale cultivation of animal cells to obtain muscle, fat, and other tissues, which are then processed into meat products. Compared to traditional meat production methods, cell-cultured meat may significantly reduce energy consumption by 7% to 45%, greenhouse gas emissions by 78% to 96%, land use by 99%, and water use by 82% to 96%. This technology offers several advantages, including a shorter production cycle and enhanced environmental sustainability, resource efficiency, and overall sustainability.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!