Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is a critical pathological feature in the pathogenesis of pulmonary arterial hypertension (PAH), but the regulatory mechanisms remain largely unknown. Herein, we demonstrated that interferon regulatory factor 9 (IRF9) accelerated PASMCs proliferation by regulating Prohibitin 1 (PHB1) expression and the AKT-GSK3β signaling pathway. Compared with control groups, the rats treated with chronic hypoxia (CH), monocrotaline (MCT) or sugen5416 combined with chronic hypoxia (SuHx), and mice challenged with CH had significantly thickened pulmonary arterioles and hyperproliferative PASMCs. More importantly, the protein level of IRF9 was found to be elevated in the thickened medial wall of the pulmonary arterioles in all of these PAH models. Notably, overexpression of IRF9 significantly promoted the proliferation of rat and human PASMCs, as evidenced by increased cell counts, EdU-positive cells and upregulated biomarkers of cell proliferation. In contrast, knockdown of IRF9 suppressed the proliferation of rat and human PASMCs. Mechanistically, IRF9 directly restrained PHB1 expression and interacted with AKT to inhibit the phosphorylation of AKT at thr308 site, which finally led to mitochondrial dysfunction and PASMC proliferation. Unsurprisingly, MK2206, a specific inhibitor of AKT, partially reversed the PASMC proliferation inhibited by IRF9 knockdown. Thus, our results suggested that elevation of IRF9 facilitates PASMC proliferation by regulating PHB1 expression and AKT signaling pathway to affect mitochondrial function during the development of PAH, which indicated that targeting IRF9 may serve as a novel strategy to delay the pathological progression of PAH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672195 | PMC |
http://dx.doi.org/10.3389/fphar.2021.773235 | DOI Listing |
J Biol Chem
December 2024
Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan. Electronic address:
Prohibitins (PHBs) are ubiquitously expressed proteins in the mitochondrial inner membrane (MIM) that provide membrane scaffolds for both mitochondrial proteins and phospholipids. Eukaryotic PHB complexes contain two highly homologous PHB subunits, PHB1 and PHB2, which are involved in various cellular processes, including metabolic control through the regulation of mitochondrial dynamics and integrity. Their mechanistic actions at the molecular level, however, particularly those of PHB1, remain poorly understood.
View Article and Find Full Text PDFExp Cell Res
September 2024
Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
Inflammation-induced choroidal neovascularization followed by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) is a cause of neovascular age-related macular degeneration (nAMD). RPE-derived myofibroblasts overproduce extracellular matrix, leading to subretinal fibrosis. We already have demonstrated that benzylphenylurea (BPU) derivatives inhibit the function of cancer-associated fibroblasts.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2024
Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea. Electronic address:
Prohibitin 1 (PHB1) is ubiquitously expressed in multiple compartments within cells and is involved in the cell cycle, cell signaling, apoptosis, transcriptional regulation, and mitochondrial biogenesis at the cellular level and in the inflammation-associated and immunological functions of B and T lymphocytes. PHB1 is an important protein that performs antioxidant regulation and immune functions inside and outside cells but has not been sufficiently studied in teleost fish. Our study aimed to elucidate the functional properties and gain new insights into the biological processes and immune system of red seabream (Pagrus major), a commercially important fish cultured in South Korea and East Asia.
View Article and Find Full Text PDFCell Biol Int
August 2024
Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
Ferroptosis is a novel form of programmed cell death and is considered to be a druggable target for colorectal cancer (CRC) therapy. However, the role of ferroptosis in CRC and its underlying mechanism are not fully understood. In the present study we found that a protein enriched in the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3), was overexpressed in human CRC tissue and in several CRC cell lines.
View Article and Find Full Text PDFSci Rep
April 2024
Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
The mosquito transmitted dengue virus (DENV) is a major public health problem in many tropical and sub-tropical countries around the world. Both vaccine development and drug development are complex as the species Dengue virus consist of four distinct viruses (DENV 1 to DENV 4) each of which is composed of multiple lineages and strains. To understand the interaction of DENV with the host cell machinery, several studies have undertaken in vitro proteomic analysis of different cell lines infected with DENV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!