Mutations in the huntingtin gene (HTT) triggers aggregation of huntingtin protein (HTT), which is the hallmark pathology of neurodegenerative Huntington's disease (HD). Development of a high affinity F radiotracer would enable the study of Huntington's disease pathology using a non-invasive imaging modality, positron emission tomography (PET) imaging. Herein, we report the first synthesis of fluorine-18 imaging agent, 6-(5-((5-(2,2-difluoro-2-(fluoro-F)ethoxy)pyridin-2-yl)methoxy)benzo[]oxazol-2-yl)-2-methylpyridazin-3(2)-one ([F]1), a radioligand for HD and its preclinical evaluation (autoradiography of post-mortem HD brains) and (rodent and non-human primate brain PET). [F]1 was synthesized in a 4.1% RCY (decay corrected) and in an average molar activity of 16.5 ± 12.5 GBq/μmol (445 ± 339 Ci/mmol). [F]1 penetrated the blood-brain barrier of both rodents and primates, and specific saturable binding in post-mortem brain slices was observed that correlated to HTT aggregates identified by immunohistochemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675899 | PMC |
http://dx.doi.org/10.3389/fnins.2021.766176 | DOI Listing |
Trimethyltin chloride (TMT), an organotin compound with potent neurotoxicity, is widely used as a heat stabilizer for plastics. However, the precise pathogenic mechanism of TMT remains incompletely elucidated, and there persists a dearth of sensitive detection methodologies for early diagnosis of TMT. In this study, Sprague-Dawley rats were treated with 10 mg/kg TMT to simulate acute exposure in humans.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Department of Nuclear Medicine, Cantonal Hospital Baden, Partner Hospital for Research and Teaching of the Medical Faculty of the University of Zurich, Baden, 5404, Switzerland.
A 65-year-old woman with a history of ductal mammary carcinoma and recent autonomic dysfunction underwent a Rb-82 chloride (RbCl) cardiac PET/CT scan that showed no ischemia or scarring, but significantly reduced myocardial flow reserve (MFR) (global: 1.5) and a CAC-Score of 0. The patient's chemotherapy history (paclitaxel, carboplatin, epirubicin, pembrolizumab 2 years before) with elevated Troponin T and NT-pro-BNP levels at that time, and now reduced MFR with 0 CAC suggests cancer-therapy-related cardiotoxicity.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.
The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan.
Introduction: We integrated plasma biomarkers from the Taiwan Alzheimer's Disease Neuroimaging Initiative and propose a workflow to identify individuals showing amyloid-positive positron emission tomography (PET) with low/intermediate tau burden based on [18F]Florzolotau PET-based quantification.
Methods: We assessed 361 participants across the Alzheimer's disease (AD) and non-AD continuum and measured plasma phosphorylated tau (p-tau)217, p-tau181, amyloid beta (Aβ)42/40 ratio, neurofilament light chain, and glial fibrillary acidic protein levels at two medical centers. We evaluated the diagnostic potential of these biomarkers.
Alzheimers Dement
January 2025
Computational Brain Research and Intervention (C-Brain) Lab, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA.
Introduction: Amyloid beta (Aβ) plaques and hyperphosphorylated tau in the entorhinal regions are key Alzheimer's disease (AD) markers, but the spatial Aβ pathways influencing tau pathology remain unclear.
Methods: We applied predictive modeling to identify Aβ standardized uptake value ratio (SUVR) spatial patterns that predict entorhinal tau levels, future hippocampal volume, and Preclinical Alzheimer's Cognitive Composite (PACC) scores at 5-year follow-up. The model was trained on Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 237), incorporating amyloid-PET (positron emission tomography), tau-PET, magnetic resonance imaging (MRI), and cognitive data, and validated on Harvard Aging Brain Study (HABS) (N = 276).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!