The COVID-19 outbreak in 2020 prompted strict lockdowns, reduced human activity, and reduced emissions of air pollutants. We measured volatile organic compounds (VOCs) using a proton-transfer-reaction mass spectrometry instrument in Changzhou, China from 8 January through 27 March, including periods of pre-lockdown, strict measures (level 1), and more relaxed measures (level 2). We analyze the data using positive matrix factorization and resolve four factors: textile industrial emissions (62 ± 10% average reduction during level 1 relative to pre-lockdown), pharmaceutical industrial emissions (40 ± 20%), traffic emissions (71 ± 10%), and secondary chemistry (20 ± 20%). The two industrial sources showed different responses to the lockdown, so emissions from the industrial sector should not be scaled uniformly. The quantified changes in VOCs due to the lockdowns constrain emission inventories and inform chemistry-transport models, particularly for sectors where activity data are sparse, as the effects of lockdowns on air quality are explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667654PMC
http://dx.doi.org/10.1029/2021GL095560DOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
changzhou china
8
measures level
8
industrial emissions
8
emissions
5
measurements volatile
4
compounds covid-19
4
covid-19 lockdown
4
lockdown changzhou
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!