Fat necrosis (FN) is a common complication after autologous breast reconstruction (ABR) using a free flap, which can influence reconstruction outcome and patient satisfaction. Intraoperative near-infrared fluorescence imaging using indocyanine green (ICG) permits the visualization of flap perfusion. The aim of this study was to assess the effect of near-infrared fluorescence on FN incidence in patients undergoing an ABR with a deep inferior epigastric perforator flap (DIEP) and to propose a standard working protocol for this technique. In this prospective study, patients undergoing one-sided ABR with a DIEP were included. The standard DIEP procedure was complemented with near-infrared fluorescence imaging using the fluorescent tracer ICG to evaluate flap perfusion. This cohort was compared to a retrospective cohort of DIEP procedures without near-infrared fluorescence imaging. Patients and surgery characteristics, as well as postoperative complications, were registered and compared. In both cohorts, 24 patients were included. No significant differences were present between patients and surgery characteristics, including no difference in duration of surgery. In the prospective and retrospective group, the incidence of FN was 4.2% and 33%, respectively (p-value = 0.023). Moreover, microsurgeons were positive about using near-infrared fluorescence as it either provided additional information about perfusion or confirmed the clinical assessment. Our pilot study showed a significant decrease of FN in patients undergoing an ABR with a DIEP when near-infrared fluorescence imaging was used to assess flap perfusion. This study provides a standardized working protocol for near-infrared fluorescence imaging. In the future, large multicenter studies should focus on the quantification of near-infrared fluorescence imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bjps.2021.11.043 | DOI Listing |
Talanta
January 2025
Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:
Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.
View Article and Find Full Text PDFBiomater Sci
January 2025
School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).
View Article and Find Full Text PDFRSC Med Chem
December 2024
Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
Estrogen receptor β (ERβ) is aberrantly expressed in castration-resistant prostate cancer (CRPC). Therefore, a diagnostic and therapeutic ERβ probe not only helps to reveal the complex role of ERβ in prostate cancer (PCa), but also promotes ERβ-targeted PCa therapy. Herein, we reported a novel ERβ-targeted near-infrared fluorescent probe D3 with both imaging and therapeutic functions, which had the advantages of high ERβ selectivity, good optical performance, and strong anti-interference ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!