Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wind erosion is a critical factor in land degradation worldwide, particularly in arid and semi-arid regions of southern Iran, which have been severely exposed to wind erosion in the recent years due to climate change and land use changes. The main objective of the present study was to predict the wind erosion rate (WER) using easily measurable soil properties combined with some data mining approaches. For this purpose, the WER was measured at 100 locations with different land uses and soil types in the Fars Province, southern Iran using a portable wind tunnel. The WER was predicted by multiple linear regression (MLR), support vector regression (SVR) and decision tree (DT) algorithms using easily measurable soil properties. Results revealed that land use and soil type had significant effect on the WER. The highest mean WER was observed in Entisols with the lowest organic matter (OM), the lowest penetration resistance (PR) and the lowest aggregate mean weight diameter (MWD). Bare lands with the lowest OM and MWD showed the highest WER compared to other land uses. R and RMSE of the non-linear regression models developed based on the type of the relationship between the WER and easily measurable soil properties improved by 15% and 12%, respectively, compared to the linear regression model. In both train and test datasets, the SVR and DT models coupled to a genetic algorithm (GA) used for selecting the effective easily measurable soil properties had higher performance than the SVR and DT models using all easily measurable soil properties for predicting WER. With respect to statistical indices, the SVR model with R = 0.91 and RMSE = 0.68 g m s outperformed the MLR and DT for predicting the WER. We concluded that combining the SVR with GA could be an applicable and promising method for predicting WER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.114171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!