Isofuranodiene (IFD) is a sesquiterpene occurring in several plant species, which proved to have multiple anticancer activities. IFD has a lipophilic nature and, hence, a very low water solubility and a poor bioavailability; moreover, it is not stable, undergoing the "Cope rearrangement" to the less active curzerene. The use of appropriate delivery systems can thus be considered as a valid tool to enhance IFD bioavailability, solubility, stability and at the same time also to improve its intracellular uptake and pharmacological activity. Within this frame, monoolein (GMO) nanoparticles loaded with IFD were prepared and their enhanced anticancer activity, compared to pristine IFD, was assessed. In this study, for the first time, an in vitro Fourier Transform Infrared and Raman Microspectroscopy approaches were exploited to evaluate the effects of IFD, alone and loaded in GMO nanoparticles, on MDA-MB 231 breast cancer cell line. The anti-cancer effects of IFD were evidenced by both the spectroscopic techniques and discriminated from the GMO-induced changes in the culture environment; moreover, a synergistic effect of IFD and GMO administration can be envisaged by the experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120735DOI Listing

Publication Analysis

Top Keywords

mda-mb 231
8
231 breast
8
breast cancer
8
cancer cell
8
infrared raman
8
ifd
8
gmo nanoparticles
8
effects ifd
8
vibrational vitro
4
vitro approach
4

Similar Publications

: Triple-negative breast cancer (TNBC) is the most challenging molecular subtype of breast cancer (BC) in clinical practice, associated with a worse prognosis due to limited treatment strategies and its insensitivity to conventional drugs. Zinc is an important trace element for homeostasis, and its Schiff base metal complexes have shown promise in treating advanced tumors. In this study, four new heteroleptic Zn(II) complexes (-) with Schiff bases were synthesized, characterized, and evaluated for their activity in BC cells.

View Article and Find Full Text PDF

Anti-Inflammatory and Anticancer Effects of Kaurenoic Acid in Overcoming Radioresistance in Breast Cancer Radiotherapy.

Nutrients

December 2024

Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.

: Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in mediating anti-inflammatory and anticancer effects in the tumor microenvironment. Kaurenoic acid (KA), a diterpene compound isolated from (L.) Pruski, has been demonstrated to exert anti-inflammatory, anticancer, and antihuman immunodeficiency virus effects.

View Article and Find Full Text PDF

: Breast cancer influences more than 2 million women worldwide annually. Since apoptotic dysregulation is a cancer hallmark, targeting apoptotic regulators encompasses strategic drug development for cancer therapy. One such class of apoptotic regulators is inhibitors of apoptosis proteins (IAP) which are a class of E3 ubiquitin ligases that actively function to support cancer growth and survival.

View Article and Find Full Text PDF

This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the or conformation of the aldehyde group in the ligands, and the presence of isomers in the metal complexes obtained in the solid state. tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3).

View Article and Find Full Text PDF

We report the design and development of a novel multifunctional nanostructure, RB-AuSiO_HSA-DOX, where tri-modal cancer treatment strategies-photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy-luminescent properties and targeting are integrated into the same scaffold. It consists of a gold core with optical and thermo-plasmonic properties and is covered by a silica shell entrapping a well-known photosensitizer and luminophore, Rose Bengal (RB). The nanoparticle surface was decorated with Human Serum Albumin (HSA) through a covalent conjugation to confer its targeting abilities and as a carrier of Doxorubicin (DOX), one of the most effective anticancer drugs in clinical chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!