Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation.

J Colloid Interface Sci

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China. Electronic address:

Published: March 2022

AI Article Synopsis

Article Abstract

Preparation of nanofilms which are able to reject water-soluble low molecular weight organic compounds in nanofiltration remains to be a challenge. Herein, we report a new kind of self-standing, defect-free, robust, centimeter-sized and thickness controllable calix[4]pyrrole (C[4]P)-based nanofilms with excellent molecular sieving performance in nanofiltration. The nanofilms were prepared via confined dynamic condensation of the tetra-benzoyl-hydrazine derivative of calix[4]pyrrole (CPTBH) with 1,3,5-benzenetricarboxaldehyde (BTC) at the air/dimethyl sulfoxide (DMSO) interface. Nanofiltration tests under 2 bar pressure with porous polyethylene terephthalate (PET) as the support and a CsF treated CPTBH-BTC nanofilm (∼100 nm) as the selective layer depicted a water permeance of 15 L mh bar and a methanol permeance of 45 L mh bar. High rejection rates (>95%) were found in aqueous solution for most of the tested dyes and pharmaceuticals. Remarkably, the composite membrane also demonstrated good separation performance in aqueous phase to some amino acids and organic dyes with molecular weights around 200 g/mol. High-performance nanofiltration in methanol was also realized. In this case, the molecular weight cutoff value is ∼ 800 g/mol. These findings showed that introduction of macrocyclic hosts is an effective way to develop nanofilms with high solvent permeance but low molecular weight cutoff value.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.12.037DOI Listing

Publication Analysis

Top Keywords

molecular weight
12
low molecular
8
permeance bar
8
weight cutoff
8
molecular
6
nanofilms
5
conformationally tunable
4
tunable calix[4]pyrrole-based
4
calix[4]pyrrole-based nanofilms
4
nanofilms efficient
4

Similar Publications

Study Objective: The osmol gap can help detect and manage those with toxic alcohol exposure, and it is altered by all alcohols including ethanol. The optimal correction for ethanol that would allow accurate detection of an alternative alcohol is unclear.

Methods: We conducted a prospective cohort study to assess baseline variations in osmol gap, and then to assess the validity of 2 commonly used coefficients (correction factors) for ethanol.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Levan is a fructan-type homopolysaccharide that has gained increasing attention due to its unique properties and promising applications. It is a fructose-based polymer produced through microbial fermentation by diverse microorganisms, including bacteria, yeasts and archaea. The ongoing research on levan mainly focuses on optimizing production processes, elucidating its biological functions, and uncover novel applications.

View Article and Find Full Text PDF

In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!