Background: A large volume of dye molecules finds its way into the environment, accumulates in water bodies, and makes the aquatic system unsafe to human health. Due to the complex nature of these dye materials, most of the conventional techniques are not effective for their removal. Semiconductor photocatalysis has emerged as a promising technique for  the destruction of organic pollutants under UV or visible light irradiation. Among the semiconductors, BiS is widely employed in photocatalysis due to its non-toxicity and chemical stability. However, one of its problems is the high recombination rate of the charge, and various methods have been employed to enhance the photo-reactivity. One of  these methods is the incorporation of transition elements.

Results: Herein, a facile solvothermal method was used to prepare BiS nanorods and needle- shaped Sn doped BiS, using bismuth(III) tris(N-phenyldithiocarbamate) as a single-source precursor. The prepared nanomaterials were characterized, and used as efficient photocatalyst for the photo enhanced degradation of methylene blue (MB) dye under visible light irradiation. The nanomaterials exhibited very good photocatalytic activity towards the photo degradation of MB, showing a degradation rate of up to 83% and 94% within 150 min for the pristine and Sn doped BiS,  respectively.

Conclusion: The enhancement in the photocatalytic activity of the Sn doped BiS was attributed to the suppression in the recombination rate of the electron-hole pairs, due to the formation of new energy level below the CB, that was capable of altering the equilibrium concentration of the carrier. This confirmed that Sn doped BiS could be utilized as valuable cost-efficient catalysts for eliminating methyl blue from aqueous solutions and also possible candidates in environmental pollution treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684666PMC
http://dx.doi.org/10.1186/s13065-021-00792-9DOI Listing

Publication Analysis

Top Keywords

doped bis
16
photocatalytic activity
12
degradation methylene
8
methylene blue
8
visible light
8
light irradiation
8
recombination rate
8
bis
6
solvothermal synthesis
4
synthesis pure
4

Similar Publications

Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).

View Article and Find Full Text PDF

Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.

View Article and Find Full Text PDF

Boosting Thermoelectric Performance of Semicrystalline Conducting Polymers by Simply Adding Nucleating Agent.

Adv Mater

January 2025

State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian, 350002, China.

Controlling the microstructure of semiconducting polymers is critical for optimizing thermoelectric performance, yet remains challenging, requiring complex processing techniques like alignment. In this study, a straightforward strategy is introduced to enhance the thermoelectric properties of semi-crystalline polymer films by incorporating minimal amounts of nucleating agents, a method widely used in traditional polymer industries. By blending less than 1 wt% of N,N'-(1,4-phenyl)diisonicotinamide (PDA) into poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14), controlled modulation of crystallization behavior is achieved, resulting in reduced structural disorder and enhanced charge carrier mobility.

View Article and Find Full Text PDF

Engineering 3D microtip gates of all-polymer organic electrochemical transistors for rapid femtomolar nucleic-acid-based saliva testing.

Biosens Bioelectron

January 2025

School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China. Electronic address:

Point-of-care testing (POCT) of trace amount of biomarkers in biofluids is critical towards health monitoring and early diagnosis. In particular, to facilitate non-invasive saliva testing, the development of low-cost, lightweight and disposable biosensors is in urgent need, while the ultrahigh sensitivity beyond conventional clinical tests remains a great challenge. Herein, we demonstrate a simple and fully printable all-polymer organic electrochemical transistor (OECT) biosensor to detect femtomolar (fM)-level biomolecules in saliva within a few minutes by employing highly conducting lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) serving as both the channel and gate.

View Article and Find Full Text PDF

Pneumonia is a prevalent acute respiratory infection and a major cause of mortality and hospitalization, and the urgent demand for a rapid, direct, and highly accurate diagnostic method capable of detecting both () and () arises from their prominent roles as the primary pathogens responsible for pneumonia. Herein, two luminescent iridium complexes with nonoverlapping photoluminescence spectra, iridium(III)-bis [4,6-(difluorophenyl)-pyridinato-N,C'] picolinate (abbreviated as Ir-B) and bis (2-(3,5- dimethylphenyl) quinoline-C2,N') (acetylacetonato) iridium(III)) (abbreviated as Ir-R), were unprecedently proposed to construct a novel wavelength-resolved magnetic multiplex biosensor for simultaneous detection of and based on catalytic hairpin assembly (CHA) signal amplification strategy combined with dye-doped silica nanoparticles. Notably, the proposed wavelength-resolved multiplex biosensor not only exhibits a broad linear range from 50 pM to 10 nM but also demonstrates excellent recovery rates for (96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!