Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Toxoplasma gondii develops a latent infection in the muscle and central nervous system that acts as a reservoir for acute-stage reactivation in vulnerable patients. Little is understood about how parasites manipulate host cells during latent infection and the impact this has on survival. We show that bradyzoites impart a unique transcriptional signature on infected host cells. Many of these transcriptional changes rely on protein export and result in the suppression of type I interferon (IFN) and IFNγ signaling more so than in acute stages. Loss of the protein export component, MYR1, abrogates transcriptional remodeling and prevents suppression of IFN signaling. Among the exported proteins, the inhibitor of STAT1 transcription (IST) plays a key role in limiting IFNγ signaling in bradyzoites. Furthermore, bradyzoite protein export protects host cells from IFNγ-mediated cell death, even when export is restricted to latent stages. These findings highlight the functional importance of host manipulation in Toxoplasma's bradyzoite stages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chom.2021.11.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!