AI Article Synopsis

  • The study presents a novel quadruple helicene composed of two [6] and two [7]helicene moieties, involving 92 sp carbon atoms, synthesized through a single Scholl reaction.
  • Chemical oxidation of this helicene yields a stable dication that maintains the same helicity across its four moieties, confirmed by single-crystal X-ray crystallography.
  • The quadruple helicene displays unique optical properties with near-infrared absorption and emission peaks at 848 nm and 977 nm, along with distinct electronic circular dichroism in both near-infrared and visible-light regions.

Article Abstract

Herein, we report the synthesis, structural analysis, optical and chiroptical properties of a novel quadruple helicene, which has two [6] and two [7]helicene moieties fused in a contorted framework of 92 sp carbon atoms. It was synthesized by the Scholl reaction of a perylene-containing substrate with the formation of eight carbon-carbon bonds on the perylene unit in a single synthetic operation. Chemical oxidation of the quadruple helicene with tris(4-bromophenyl)ammoniumyl hexachloroantimonate resulted in an air-stable dication, which exhibits the same helicity in its four helicene moieties as unambiguously identified by single-crystal X-ray crystallography. The quadruple helicene exhibits unusual near-infrared absorption and emission with absorption and emission maxima at 848 nm and 977 nm, respectively, and its isolated enantiomers exhibit electronic circular dichroism in the near-infrared and visible-light regions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202113203DOI Listing

Publication Analysis

Top Keywords

quadruple helicene
16
scholl reaction
8
absorption emission
8
helicene
5
near-infrared absorbing
4
absorbing emissive
4
quadruple
4
emissive quadruple
4
helicene enabled
4
enabled scholl
4

Similar Publications

Selective and Divergent Synthesis of Naphthalene- and Phenanthrene-Fused Azahelicenes by Turning Rearrangement On or Off.

Chemistry

January 2025

Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan.

The Scholl reaction has been used to synthesize a variety of polycyclic aromatic hydrocarbons, where 1,2-aryl shifts have sometimes occurred to yield unique rearrangement products. However, such 1,2-aryl shifts are often uncontrollable, and the selective and divergent synthesis with or without rearrangement is desired. Here, we achieved the control of the rearrangement in the Scholl reaction of carbazoles by changing the N-substituents.

View Article and Find Full Text PDF

Organocatalytic enantioselective synthesis of double S-shaped quadruple helicene-like molecules.

Nat Commun

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.

Helicene-shaped molecules are compelling chemical structures with unique twisted helical chirality and remarkable properties. Although progress occurs in the catalytic asymmetric synthesis of helicene (-like) molecules, the enantioselective synthesis of multiple helicenes, especially four or higher helicity, is still challenging and has yet to be achieved. Herein, we report an organocatalytic [4 + 2] cycloadditions to achieve double S-shaped quadruple helicene-like molecules with high enantioselectivity (up to 96% e.

View Article and Find Full Text PDF

Multiple helicenes display distinct aromatic cores characterized by highly twisted rings that are shared or fused with constituent helicene moieties. Diversifying these aromatic cores unlocks avenues for creating multiple helicenes with distinct properties and topologies. Herein we report the synthesis of a quadruple[6]helicene featuring pyrene as the aromatic core.

View Article and Find Full Text PDF

Deep-Saddle-Shaped Nanographene Induced by Four Heptagons: Efficient Synthesis and Properties.

J Am Chem Soc

October 2024

Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.

The construction of multiple heptagonal rings in nanographene is the key step for obtaining exotic carbon nanostructures with a negative curvature and intriguing properties. Herein, a novel saddle-shaped nanographene () with four embedded heptagons is synthesized via a highly efficient one-shot Scholl reaction from a predesigned oligophenylene precursor. Notably, a quadruple [6]helicene intermediate was also obtained and isolated by controlling the Scholl reaction conditions.

View Article and Find Full Text PDF

The incorporation of heteroatoms and/or heptagons as the defects into helicenes expands the variety of chiroptical materials with novel properties. However, it is still challenging to construct novel boron-doped heptagon-containing helicenes with high photoluminescence quantum yields (PLQYs) and narrow full-width-at-half-maximum (FWHM) values. We report an efficient and scalable synthesis of a quadruple helicene 4Cz-NBN with two nitrogen-boron-nitrogen (NBN) units and a double helicene 4Cz-NBN-P1 bearing two NBN-doped heptagons, the latter could be formed via a two-fold Scholl reaction of the former.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!