Attenuated Ochratoxin A Transporter Expression in a Mouse Model of Nonalcoholic Steatohepatitis Protects against Proximal Convoluted Tubule Toxicity.

Drug Metab Dispos

Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)

Published: October 2022

Ochratoxin A (OTA) is an abundant mycotoxin, yet the toxicological impact of its disposition is not well studied. OTA is an organic anion transporter (OAT) substrate primarily excreted in urine despite a long half-life and extensive protein binding. Altered renal transporter expression during disease, including nonalcoholic steatohepatitis (NASH), may influence response to OTA exposure, but the impact of NASH on OTA toxicokinetics, tissue distribution, and associated nephrotoxicity is unknown. By inducing NASH in fast food-dieted/thioacetamide-exposed mice, we evaluated the effect of NASH on a bolus OTA exposure (12.5 mg/kg by mouth) after 3 days. NASH mice presented with less gross toxicity (44% less body weight loss), and kidney and liver weights of NASH mice were 11% and 24% higher, respectively, than healthy mice. Organ and body weight changes coincided with reduced renal proximal tubule cells vacuolation, degeneration, and necrosis, though no OTA-induced hepatic lesions were found. OTA systemic exposure in NASH mice increased modestly from 5.65 ± 1.10 to 7.95 ± 0.61 mg*h/ml per kg BW, and renal excretion increased robustly from 5.55% ± 0.37% to 13.11% ± 3.10%, relative to healthy mice. Total urinary excretion of OTA increased from 24.41 ± 1.74 to 40.07 ± 9.19 g in NASH mice, and kidney-bound OTA decreased by ∼30%. Renal OAT isoform expression (OAT1-5) in NASH mice decreased by ∼50% with reduced OTA uptake by proximal convoluted cells. These data suggest that NASH-induced OAT transporter reductions attenuate renal secretion and reabsorption of OTA, increasing OTA urinary excretion and reducing renal exposure, thereby reducing nephrotoxicity in NASH. SIGNIFICANCE STATEMENT: These data suggest a disease-mediated transporter mechanism of altered tissue-specific toxicity after mycotoxin exposure, despite minimal systemic changes to ochratoxin A (OTA) concentrations. Further studies are warranted to evaluate the clinical relevance of this functional model and the potential effect of human nonalcoholic steatohepatitis on OTA and other organic anion substrate toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513848PMC
http://dx.doi.org/10.1124/dmd.121.000451DOI Listing

Publication Analysis

Top Keywords

nash mice
20
ota
13
nonalcoholic steatohepatitis
12
nash
10
transporter expression
8
proximal convoluted
8
ochratoxin ota
8
ota organic
8
organic anion
8
ota exposure
8

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder with no established pharmacotherapy. Quercetin, a polyphenolic flavonoid, demonstrates potential hepatoprotective effects but has limited bioavailability. This study evaluates the impact of quercetin on NAFLD and assesses the roles of autophagy-related proteins in disease progression.

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

Beer and its components show potential for reducing hepatic steatosis in rodent models through multiple mechanisms. This study aimed to evaluate beer's anti-steatotic effects in a high-fat diet (HFD)-induced mouse model of Metabolic dysfunction-Associated Liver Disease (MASLD) and to explore the underlying mechanisms. In the HFD group, steatosis was confirmed by altered blood parameters, weight gain, elevated liver lipid content, and histological changes.

View Article and Find Full Text PDF

Evaluating the Efficacy of Levetiracetam on Non-Cognitive Symptoms and Pathology in a Tau Mouse Model.

Biomedicines

December 2024

Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.

Alzheimer's disease (AD) is marked by amyloid-β plaques and hyperphosphorylated tau neurofibrillary tangles (NFTs), leading to cognitive decline and debilitating non-cognitive symptoms. This study aimed to evaluate compounds from four different classes in a short-term (7-day) study using transgenic tau mice to assess their ability to reduce non-cognitive symptoms. The best candidate was then evaluated for longer exposure to assess non-cognitive symptoms, cognition, and pathology.

View Article and Find Full Text PDF

Hepatic Steatosis Analysis in Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Artificial Intelligence.

Diagnostics (Basel)

December 2024

Peking University People's Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People's Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China.

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of fat in the liver, excluding excessive alcohol consumption and other known causes of liver injury. Animal models are often used to explore different pathogenic mechanisms and therapeutic targets of MASLD. The aim of this study is to apply an artificial intelligence (AI) system based on second-harmonic generation (SHG)/two-photon-excited fluorescence (TPEF) technology to automatically assess the dynamic patterns of hepatic steatosis in MASLD mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!