Unlabelled: The aggressive nature of pancreatic ductal adenocarcinoma (PDAC) mandates the development of improved therapies. As KRAS mutations are found in 95% of PDAC and are critical for tumor maintenance, one promising strategy involves exploiting KRAS-dependent metabolic perturbations. The macrometabolic process of autophagy is upregulated in KRAS-mutant PDAC, and PDAC growth is reliant on autophagy. However, inhibition of autophagy as monotherapy using the lysosomal inhibitor hydroxychloroquine (HCQ) has shown limited clinical efficacy. To identify strategies that can improve PDAC sensitivity to HCQ, we applied a CRISPR-Cas9 loss-of-function screen and found that a top sensitizer was the receptor tyrosine kinase (RTK) insulin-like growth factor 1 receptor (IGF1R). Additionally, reverse phase protein array pathway activation mapping profiled the signaling pathways altered by chloroquine (CQ) treatment. Activating phosphorylation of RTKs, including IGF1R, was a common compensatory increase in response to CQ. Inhibition of IGF1R increased autophagic flux and sensitivity to CQ-mediated growth suppression both in vitro and in vivo. Cotargeting both IGF1R and pathways that antagonize autophagy, such as ERK-MAPK axis, was strongly synergistic. IGF1R and ERK inhibition converged on suppression of glycolysis, leading to enhanced dependence on autophagy. Accordingly, concurrent inhibition of IGF1R, ERK, and autophagy induced cytotoxicity in PDAC cell lines and decreased viability in human PDAC organoids. In conclusion, targeting IGF1R together with ERK enhances the effectiveness of autophagy inhibitors in PDAC.

Significance: Compensatory upregulation of IGF1R and ERK-MAPK signaling limits the efficacy of autophagy inhibitors chloroquine and hydroxychloroquine, and their concurrent inhibition synergistically increases autophagy dependence and chloroquine sensitivity in pancreatic ductal adenocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886214PMC
http://dx.doi.org/10.1158/0008-5472.CAN-21-1443DOI Listing

Publication Analysis

Top Keywords

igf1r erk
16
concurrent inhibition
12
inhibition igf1r
12
autophagy inhibitors
12
autophagy
10
igf1r
9
pancreatic ductal
8
ductal adenocarcinoma
8
pdac
7
inhibition
5

Similar Publications

Ultraviolet (UV) irradiation is a major factor contributing to skin photoaging, including the formation of reactive oxygen species (ROS), collagen breakdown, and overall skin damage. Insulin-like growth factor-I (IGF-1) is a polypeptide hormone that regulates dermal survival and collagen synthesis. Echinacoside (Ech), a natural phenylethanoid glycoside, is the most abundant active compound in Cistanches.

View Article and Find Full Text PDF

Thyroid-associated ophthalmopathy (TAO), an autoimmune disorder of the retrobulbar tissue, is present in up to 50 percent of Graves's hyperthyroidism patients. Insulin-like growth factor 1 receptor (IGF-1R) has received attention as a target for the development of therapeutic agent for TAO. IGF-1R and TSHR (thyroid stimulating hormone receptor) interact with each other to form a physical or functional complex, further promoting the development of TAO.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) represents a prevalent condition characterized by the demyelination of affected nerves. The challenge of remyelinating these nerves and achieving satisfactory functional recovery has long been a persistent issue. The specific contributions of growth hormone (GH) in the aftermath of PNI have remained ambiguous.

View Article and Find Full Text PDF

Insulin resistance impairs the cellular insulin response, and often precedes metabolic disorders, like type 2 diabetes, impacting an increasing number of people globally. Understanding the molecular mechanisms in hepatic insulin resistance is essential for early preventive treatments. To elucidate changes in insulin signal transduction associated with hepatocellular resistance, we employed a multi-layered mass spectrometry-based proteomics approach focused on insulin receptor (IR) signaling at the interactome, phosphoproteome, and proteome levels in a long-term hyperinsulinemia-induced insulin-resistant HepG2 cell line with a knockout of the insulin-like growth factor 1 receptor (IGF1R KO).

View Article and Find Full Text PDF

Senescent cells exert their effects through the release of various factors, collectively referred to as the senescence-associated secretory phenotype (SASP). The SASP can induce senescence in healthy cells (secondary senescence), modulate immune system function, reshape the extracellular matrix, and facilitate cancer progression.Among SASP components, certain factors act as key regulators in the induction of secondary senescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!