Antibacterial, antibiofilm, anti-inflammatory, and wound healing effects of nanoscale multifunctional cationic alternating copolymers.

Bioorg Chem

Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Published: February 2022

Infectious diseases caused by new or unknown bacteria and viruses, such as anthrax, cholera, tuberculosis and even COVID-19, are a major threat to humanity. Thus, the development of new synthetic compounds with efficient antimicrobial activity is a necessity. Herein, rationally designed novel multifunctional cationic alternating copolymers were directly synthesized through a step-growth polymerization reaction using a bivalent electrophilic cross-linker containing disulfide bonds and a diamine heterocyclic ring. To optimize the activity of these alternating copolymers, several different diamines and cross-linkers were explored to find the highest antibacterial effects. The synthesized nanopolymers not only displayed good to excellent antibacterial activity as judged by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli, but also reduced the number of biofilm cells even at low concentrations, without killing mammalian cells. Furthermore, in vivo experiments using infected burn wounds in mice demonstrated good antibacterial activity and stimulated wound healing, without causing systemic inflammation. These findings suggest that the multifunctional cationic nanopolymers have potential as a novel antibacterial agent for eradication of multidrug resistant bacterial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2021.105550DOI Listing

Publication Analysis

Top Keywords

multifunctional cationic
12
alternating copolymers
12
wound healing
8
cationic alternating
8
antibacterial activity
8
antibacterial
5
antibacterial antibiofilm
4
antibiofilm anti-inflammatory
4
anti-inflammatory wound
4
healing effects
4

Similar Publications

Interstitial Oxygen-Driven Far-Red/Near-Infrared Emission and Efficiency Enhancement via Heterovalent Cation Substitution in CaWO Phosphors.

Inorg Chem

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Material Science and Engineering, Shandong University, Jinan 250061, P. R. China.

In this work, CaWO (CWO) phosphors were successfully synthesized using a high-temperature solid-state method, exhibiting an anomalous far-red/near-infrared (FR-NIR) emission centered at 685 nm. The origin of this FR-NIR emission is confirmed through Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and heterovalent cationic substitution (Y/Na → Ca). These analyses indicate that interstitial oxygen (O) defects within the lattice are primarily responsible for the FR-NIR emission.

View Article and Find Full Text PDF

This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dye, methyl orange was selected to understand how different parameters, such as temperature (20-80°C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity.

View Article and Find Full Text PDF

Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.

View Article and Find Full Text PDF
Article Synopsis
  • A new method was developed to create multifunctional cellulose fabric that combines antibacterial properties with improved dyeability.
  • The process involved reacting epoxidized soybean oil with cellulose and polyhexamethylene guanidine hydrochloride under alkaline conditions to introduce both hydrophobic and cationic characteristics.
  • The modified cotton showed impressive dye performance without salt, high colorfastness, and adjustable levels of hydrophilicity and hydrophobicity, all achieved through a simple and eco-friendly chemical modification method.
View Article and Find Full Text PDF

Managing wounds infected with multi-drug-resistant (MDR) bacteria remains a significant public health challenge in clinical settings. While multifunctional hydrogels are commonly employed to treat skin infections, there is a scarcity of hydrogels that effectively combine cationic guar gum (CG) with both potent antimicrobial and safe therapeutic actions. This study introduces a novel pH responsive, dual-dynamically crosslinked hydrogel (CFC-PDA/Ag), synthesized by crosslinking CG with polydopamine (PDA)-coated silver nanozymes (PDA/PM-AgNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!