Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since its introduction in 1986, 3D printing technology is in constant development. 3D printers are becoming more and more performant and accessible. In 2013, the Liberator blueprints are released online. This single-shot pistol can be entirely manufactured using a 3D printer, except for the firing pin and the ammunition. First, this research aims at establishing an overview of all the elements and traces potentially present when a 3D-printed firearm is involved, whether it is fired or not. In the second part, we study these elements for exploitability to obtain information about the manufacture of the firearm (printing processes, 3D printers and polymers). For this purpose, a total of 36 Liberators were manufactured using different printing conditions (i.e., printing processes, printers, polymers and parameters). The tested printing processes were based on the principles of Material Extrusion (ME), Vat Photopolymerization (VP) and Powder Bed Fusion (PBF). All 3D-printed firearms manufactured via ME and PBF were able to fire whereas Liberators manufactured by VP printing could not be fired. This could be explained by the lack of precision of the prints making it impossible to assemble some of the Liberators, or by the fact that the polymer was not suitable to produce the springs. All the barrels were broken by the discharge, projecting polymer pieces or fragments into the environment. These polymer pieces or fragments were examined to determine which printing process was used as well as other elements related to printing parameters and conditions (e.g., layer height, filling pattern and infill density). This information is useful to determine whether a certain command file, slicer or 3D printer could be at the source of a questioned 3D-printed firearm. Melted polymer or polymer particles on elements of ammunition may also be present after the firing process. However, the examination of these particles does not allow inferring other information, except the possible use of a 3D-printed polymer firearm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2021.111144 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!