Nutrient-hormone relations: Driving root plasticity in plants.

Mol Plant

Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany. Electronic address:

Published: January 2022

Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2021.12.004DOI Listing

Publication Analysis

Top Keywords

nutrient-hormone relations
8
plasticity plants
8
lateral roots
8
root
6
relations driving
4
driving root
4
root plasticity
4
plants optimal
4
optimal plant
4
plant development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!