AI Article Synopsis

  • The flaviviral NS1 glycoprotein is crucial in tick-borne encephalitis (TBE) pathology and could serve as a biomarker for early diagnosis and a target for therapy.
  • Eukaryotic expression systems are typically used to produce NS1, but attempts to express it in Escherichia coli were largely unsuccessful due to solubility and folding issues.
  • This study successfully produced soluble Trx-fused TBEV NS1 in E. coli by modifying cultivation conditions, and both soluble and refolded proteins exhibited immunological properties similar to native NS1, confirmed through various analysis methods.

Article Abstract

There is evidence that flaviviral NS1 glycoprotein plays an important role in the pathology of tick-borne encephalitis (TBE) and NS1-specific antibodies are detected in the blood of patients with TBE. This makes NS1 a good target for the development of therapeutic inhibitors and NS1 could be an important biomarker for the early diagnosis of TBE in vaccinated individuals. Eukaryotic expression systems are mainly used to produce recombinant tick-borne encephalitis virus (TBEV) NS1. The expression of TBEV NS1 proteins in eukaryotic cells was successful, but there were some limitations. Several attempts have also been made to obtain the NS1 protein in Escherichia coli cells; however, they were unsuccessful due to the low solubility of the recombinant protein and improper folding. In this study, using Trx-tag as a fusion partner, soluble Trx-fused TBEV NS1 protein was first produced in the E. coli BL21 strain. In addition, insoluble Trx-fused TBEV NS1 protein was obtained when cultivation conditions were changed to increase the productivity. The insoluble TBEV NS1 obtained from inclusion bodies was solubilized using chaotropic reagents and successfully refolded using dialysis. Both soluble variant and successfully refolded from inclusion bodies variant showed immunological properties similar to the native TBEV NS1 protein and were recognized by specific monoclonal antibodies (mAbs), immune ascetic fluid in ELISA, western blot, and competitive analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2021.106031DOI Listing

Publication Analysis

Top Keywords

tbev ns1
24
ns1 protein
16
tick-borne encephalitis
12
ns1
11
immunological properties
8
properties native
8
trx-fused tbev
8
inclusion bodies
8
protein
7
tbev
6

Similar Publications

Reported tick-borne-encephalitis (TBE) cases have been increasing in Western Austria, but no data are available on vaccination- and infection-specific seroprevalence. This study aimed to estimate current TBEV-seroprevalence in the region and inform prevention programs by comparing anti-NS1-based-incidence rates with reported case numbers and vaccination coverage. Between December 2023 and February 2024, serum samples from 4619 blood donors in Western Austria were collected and analyzed using TBEV- and WNV-IgG-ELISA assays.

View Article and Find Full Text PDF

Objectives: (Bbsl) and tick-borne encephalitis virus (TBEV) are tick-borne pathogens. This study aimed to investigate the seroprevalence of these pathogens in Danish blood donors.

Methods: A total of 1000 plasma samples equally distributed (n = 200) from all five Danish regions were analyzed.

View Article and Find Full Text PDF

Despite the availability of tick-borne encephalitis (TBE) vaccines, the incidence of TBE is increasing. To understand the historical patterns of infection, we conducted a global meta-analysis of studies before December 2023 reporting human antibody prevalence against TBEV (TBE virus) among general or high-risk population groups stratified by country, collection year, serological method, and vaccination status. Pooled data were compared within groups over time by random-effects modeling.

View Article and Find Full Text PDF

Objectives: Tick-borne encephalitis (TBE) is an infection caused by the tick-borne encephalitis virus (TBEV) that can lead to symptoms of central nervous system inflammation. There are five subtypes of TBEV, three of which - European, Siberian and Far Eastern - occur in Europe. As it is thought that different subtype infections exhibit varying clinical courses and outcomes, serological differentiation of the virus subtypes is clearly important.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) infection may cause acute central nervous system inflammation varying in clinical manifestations and severity. A possible correlation of TBEV-specific antibody and cell-mediated immune responses, shortly after infection, with clinical manifestations, severity and long-term outcome has been poorly investigated. In a cohort of thirty early tick-borne encephalitis (TBE) patients, we assessed the magnitude, specificity and functional properties of TBEV-specific T-cell and antibody responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!