A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into estrogen receptor alpha modulation by cholestenoic acids. | LitMetric

Insights into estrogen receptor alpha modulation by cholestenoic acids.

J Steroid Biochem Mol Biol

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina. Electronic address:

Published: March 2022

AI Article Synopsis

  • Oxysterols are cholesterol metabolites involved in various physiological and pathological processes, acting on multiple receptors including Liver X Receptors (LXR) and Estrogen Receptor α (ERα).
  • Their interaction with ERα is significant in conditions like ER breast cancer, inflammation, and atherosclerosis, highlighting their complex roles in health and disease.
  • Research findings show that specific cholestenoic acid analogs can activate ERα similarly to 26-hydroxycholesterol, and molecular dynamics simulations predict their activity based on structural variations, revealing their potential for selective receptor activation.

Article Abstract

Oxysterols are a family of over 25 cholesterol metabolites naturally produced by enzymatic or radical oxidation. They are involved in many physiological and pathological pathways. Although their activity has been mainly attributed to the modulation of the Liver X Receptors (LXR), it is currently accepted that oxysterols are quite promiscuous compounds, acting at several targets at the same time. The promiscuity of the oxysterols with the Estrogen Receptor α (ERα) is crucial in several pathologies such as ER breast cancer, inflammation and atherosclerosis. Regarding this matter, we have previously reported the synthesis, LXR activity and binding mode of a family of cholestenoic acid analogs with a modified side chain. Here we report the transcriptional activity on the ERα triggered by these compounds and details on the molecular determinants involved in their activities in order to establish structure-activity relationships to shed light over the molecular basis of the promiscuity of these compounds on ER/LXR responses. Our results show that 3β-hydroxy-5-cholestenoic acid can interact with the ERα receptor in a way similar to 26-hydroxycholesterol and is an agonist of the receptor. Using molecular dynamics simulations, we were able to predict the ERα activity of a set of cholestenoic acid analogs with changes in the flexibility and/or steric requirements of the side chain, some of which exhibited selective activation of ERα or LXR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2021.106046DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
8
cholestenoic acid
8
acid analogs
8
side chain
8
erα
5
insights estrogen
4
receptor
4
receptor alpha
4
alpha modulation
4
modulation cholestenoic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!