Since the pandemic occurred due to the emergence of SARS-CoV-2, there has always been a demand for a simple and sensitive diagnostic kit for detection of SARS-Cov-2 infection. In January 2020, WHO approved the Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for detecting the presence of Covid-19 genetic material in individuals. Till date many diagnostic kits have arrived in the market for quantification of SARS-CoV-2 antibodies. In spite of being the gold standard method of Covid-19 detection, there are some drawbacks associated with RT-PCR which leads to false-negative results. Hence, in order to fulfil the need for an antibody testing kit for evaluating seroconversion and immunity acquisition in the population, an efficient, highly specific and sensitive assay, Chimera Soochak, an enzyme-linked immunoassay (ELISA) Kit has been developed. It works on the principle of detecting IgG antibodies developed specifically against the S1-RBD by employing a recombinant strain of S1-RBD produced in the HEK293 cell line. The developed kit was validated using different modes and methods to attain the utmost confidence on the samples collected from patients. The validation methodology included, validation with known samples, blind study, third-party validation, validation using WHO Reference Panel and comparison with FDA approved Surrogate virus neutralization kit. The kit was found successful in detecting IgG against the S1-RBD of SARS-CoV-2. The kit had been validated on multiple parameters. A total of 900 samples had been tested by using this kit and it has exhibited the sensitivity, specificity and accuracy for all the above-mentioned parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669947PMC
http://dx.doi.org/10.1016/j.jviromet.2021.114423DOI Listing

Publication Analysis

Top Keywords

kit
9
quantification sars-cov-2
8
sars-cov-2 antibodies
8
detecting igg
8
kit validated
8
sars-cov-2
5
development validation
4
validation novel
4
novel kit
4
kit quantification
4

Similar Publications

Distinguishing abiotic corrosion from two types of microbiologically influenced corrosion (MIC) using a new electrochemical biofilm/MIC test kit.

J Environ Manage

January 2025

Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:

Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.

View Article and Find Full Text PDF

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Systematic optimisation of crude buccal swab lysate protocols for use with the ForenSeq™ DNA Signature Prep Kit.

Int J Legal Med

January 2025

Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa.

The ForenSeq™ DNA Signature Prep kit has not been thoroughly tested with crude buccal swab lysates in large-scale population studies using massively parallel sequencing (MPS). Commonly used lysis buffers for swabs intending to undergo direct polymerase chain reaction (PCR) are SwabSolution™ and STR GO! Lysis Buffers, and these have been successfully used to generate population data using capillary electrophoresis (CE) systems. In this study, we investigated the performance and optimisation of SwabSolution™ and STR GO! lysates with the ForenSeq™ DNA Signature Prep workflow and addressed the challenge of failed MPS profiles in initial trials.

View Article and Find Full Text PDF

Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).

View Article and Find Full Text PDF

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!