Heavy metal detection is critical due to its harmful effects on human health and the ecosystem. Enzyme-based platforms attract attention for heavy metal detection such as silver, a toxic metal, due to being small, portable, and requiring only essential equipment compared with the basic analytical methods. In this study, magnetic cross-linked invertase aggregates (MCLIA) were developed for the first time as an enzyme-based signaling platform to detect Ag using a personal glucose meter (PGM). EDX, FTIR, and VSM results depicted that MCLIA was successfully developed and exhibits super-paramagnetism. In addition, MCLIA selectively detected the Ag at a sensitivity of 1.2 inhibition rate/μM in a linear range from 5 to 70 μM with a detection limit of 4.6 μM and IC value of 42.3 μM. These findings strongly indicate that MCLIA is applicable as a signal platform for portable quantification of other analytes that inhibits the invertase enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2021.114527DOI Listing

Publication Analysis

Top Keywords

portable quantification
8
personal glucose
8
glucose meter
8
meter pgm
8
cross-linked invertase
8
invertase aggregates
8
aggregates mclia
8
heavy metal
8
metal detection
8
mclia developed
8

Similar Publications

On-site visual quantification of alkaline phosphatase activity in cells using a smartphone-based approach.

Anal Chim Acta

January 2025

Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.

Alkaline phosphatase (ALP) is a critical biomarker associated with various physiological and pathological processes, making its detection essential for disease diagnosis and biomedical research. In this study, we developed a novel, simple, and portable visual quantification method for ALP activity in cells using an efficient CuZnS nanomaterial with peroxidase-like properties, integrated into a smartphone-based platform for enhanced usability. The CuZnS nanomaterial catalyzes the breakdown of H₂O₂, generating ·OH radicals that oxidize the colorless substrate TMB into blue oxTMB, which is subsequently reduced back to TMB by ascorbic acid (AA).

View Article and Find Full Text PDF

A portable optical detection system for rapid quantification of two rheumatoid arthritis biomarkers.

Anal Chim Acta

January 2025

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint damage and progressive destruction of adjacent cartilage and bones. Quick and accurate detection of rheumatoid factors (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP) in serum is effective in diagnosing RA and preventing its progression. However, current methods for detecting these two biomarkers are costly, time-consuming, labor-intensive, and require specialized equipment.

View Article and Find Full Text PDF

Growing concerns about the health risks of melamine adulteration in food products highlight the urgent need for reliable detection methods. However, the long-term effects of chronic low-level melamine exposure remain inadequately explored. This study introduces THE ONE InstantCare platform, a portable immunoassay analyzer integrating a SpectroChip-based spectral processing unit (SPU) with lateral flow immunoassay (LFIA) for sensitive and accurate quantification of melamine in human urine.

View Article and Find Full Text PDF

Detection of biomarkers associated with physiological conditions provides critical insights into healthcare and disease management. However, challenges in sampling and analysis complicate the detection and quantification of protein biomarkers within the epidermal layer of the skin and in viscous liquid biopsy samples. Here, we present the "Lab-on-the-Needles" concept, utilizing a microneedle patch-based sensing box (MNP-based SenBox) for mobile healthcare applications.

View Article and Find Full Text PDF

Determining lead (Pb) concentrations in new paints using spectroscopic methods such as Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) requires technical expertise, consumables, equipment for method preparation, and instrumentation that can be cost prohibitive and difficult to maintain in low and middle-income countries (LMICs). Although portable X-ray Fluorescence (pXRF) analyzers are less expensive and simple to operate, their inaccuracy has limited their use to screening for the analysis of Pb in new, dried paint. To determine the limits of pXRF analyzers, new paint samples were purchased, dried, homogenized, and analyzed pXRF and ICP-OES.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!