Shoot branching is a complex mechanism in which secondary shoots grow from buds that are initiated from meristems established in leaf axils. The model plant Arabidopsis (Arabidopsis thaliana) has a rosette leaf growth pattern in the vegetative stage. After flowering initiation, the main stem elongates with the top leaf primordia developing into cauline leaves. Meristems in Arabidopsis initiate in the axils of rosette or cauline leaves, giving rise to rosette or cauline buds, respectively. Plasticity in the process of shoot branching is regulated by resource and nutrient availability as well as by plant hormones. However, few studies have attempted to test whether cauline and rosette branching are subject to the same plasticity. Here, we addressed this question by phenotyping cauline and rosette branching in three Arabidopsis ecotypes and several Arabidopsis mutants with varied shoot architectures. Our results showed no negative correlation between cauline and rosette branch numbers in Arabidopsis, demonstrating that there is no tradeoff between cauline and rosette bud outgrowth. Through investigation of the altered branching pattern of flowering pathway mutants and Arabidopsis ecotypes grown in various photoperiods and light regimes, we further elucidated that the number of cauline branches is closely related to flowering time. The number of rosette branches has an enormous plasticity compared with cauline branches and is influenced by genetic background, flowering time, light intensity, and temperature. Our data reveal different levels of plasticity in the regulation of branching at rosette and cauline nodes, and promote a framework for future branching analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896621 | PMC |
http://dx.doi.org/10.1093/plphys/kiab586 | DOI Listing |
Plant Physiol
October 2024
Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada.
Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown.
View Article and Find Full Text PDFFront Plant Sci
July 2024
Department of Experimental Plant Biology, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia.
Plant synaptotagmins structurally resemble animal synaptotagmins and extended-synaptotagmins. Animal synaptotagmins are well-characterized calcium sensors in membrane trafficking, and extended-synaptotagmins mediate lipid transfer at the endoplasmic reticulum-plasma membrane contact sites. Here, we characterize , which belongs to the six-member family in Arabidopsis.
View Article and Find Full Text PDFPlant Sci
December 2023
Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China. Electronic address:
Long non-coding RNAs (lncRNAs) are important regulators in plant growth and development. Here the function of a lncRNA fragment was studied, which was predicted as an endogenous target mimic (eTM) of miR156 in Brassica campesrtis. Unexpectedly, the transformation of this lncRNA into Arabidopsis thaliana neither inhibited the expression of miR156a nor resulted in any phenotypes that differed from the control plants (CK).
View Article and Find Full Text PDFJ Exp Bot
March 2023
Plant Physiology laboratory, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
Cauline leaves on the inflorescence stem of Arabidopsis thaliana may play important roles in supplying photosynthetic products to sinks, such as floral organs. Flag leaves in rice (Oryza sativa) have a higher photosynthetic capacity than other leaves, and are crucial for increasing grain yield. However, the detailed properties of stomata in cauline and flag leaves have not been investigated.
View Article and Find Full Text PDFBot Stud
July 2022
Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!