A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A partial reduction of Drp1 improves cognitive behavior and enhances mitophagy, autophagy and dendritic spines in a transgenic Tau mouse model of Alzheimer disease. | LitMetric

The purpose of our study is to understand the impact of a partial dynamin-related protein 1 (Drp1) on cognitive behavior, mitophagy, autophagy and mitochondrial and synaptic activities in transgenic Tau mice in Alzheimer's disease (AD). Our laboratory reported increased levels of amyloid-beta (Aβ) and phosphorylated Tau (P-Tau) and reported that abnormal interactions between Aβ and Drp1, P-Tau and Drp1 induced increased mitochondrial fragmentation and reduced fusion and synaptic activities in AD. These abnormal interactions result in the proliferation of dysfunctional mitochondria in AD neurons. Recent research on mitochondria revealed that fission protein Drp1 is largely implicated in mitochondrial dynamics in AD. To determine the impact of reduced Drp1 in AD, we recently crossed transgenic Tau mice with Drp1 heterozygote knockout (Drp1+/-) mice and generated double mutant (P301LDrp1+/-) mice. In the current study, we assessed the cognitive behavior, mRNA and protein levels of mitophagy, autophagy, mitochondrial biogenesis, dynamics and synaptic genes, mitochondrial morphology and mitochondrial function and dendritic spines in Tau mice relative to double mutant mice. When compared with Tau mice, double mutant mice did better on the Morris Maze (reduced latency to find hidden platform, increased swimming speed and time spent on quadrant) and rotarod (stayed a longer period of time) tests. Both mRNA- and protein-level autophagy, mitophagy, mitochondrial biogenesis and synaptic proteins were increased in double mutant mice compared with Tau (P301L) mice. Dendritic spines were significantly increased; mitochondrial number was reduced and length was increased in double mutant mice. Based on these observations, we conclude that reduced Drp1 is beneficial in a symptomatic-transgenic Tau (P301L) mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169458PMC
http://dx.doi.org/10.1093/hmg/ddab360DOI Listing

Publication Analysis

Top Keywords

double mutant
20
tau mice
16
mutant mice
16
cognitive behavior
12
mitophagy autophagy
12
dendritic spines
12
transgenic tau
12
mice
12
drp1
8
tau
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!