Since the advent of U-Net, fully convolutional deep neural networks and its many variants have completely changed the modern landscape of deep-learning based medical image segmentation. However, the over-dependence of these methods on pixel-level classification and regression has been identified early on as a problem. Especially when trained on medical databases with sparse available annotation, these methods are prone to generate segmentation artifacts such as fragmented structures, topological inconsistencies and islands of pixel. These artifacts are especially problematic in medical imaging since segmentation is almost always a pre-processing step for some downstream evaluations like surgical planning, visualization, prognosis, or treatment planning. However, one common thread across all these downstream tasks is the demand of anatomical consistency. To ensure the segmentation result is anatomically consistent, approaches based on Markov/ Conditional Random Fields, Statistical Shape Models, Active Contours are becoming increasingly popular over the past 5 years. In this review paper, a broad overview of recent literature on bringing explicit anatomical constraints for medical image segmentation is given, the shortcomings and opportunities are discussed and the potential shift towards implicit shape modelling is elaborated. We review the most relevant papers published until the submission date and provide a tabulated view with method details for quick access.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/RBME.2021.3136343 | DOI Listing |
Biomed Phys Eng Express
January 2025
National School of Electronics and Telecommunication of Sfax, Sfax rte mahdia, sfax, sfax, 3012, TUNISIA.
Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
January 2025
Department of Neurosurgery, Kanto Rosai Hospital, Kanagawa, Japan.
Background: The presence of significant tortuosity in access routes to aneurysms can interfere with catheter guidance and manipulation and significantly impact treatment strategies.
Observations: In this report, the authors combined intentional staged aneurysm embolization with the construction of a new direct access route, which they call a "highway bypass," for a symptomatic posterior circulation cerebral aneurysm that was difficult to access with a catheter. Notably, the highway bypass is used for catheter passage, and technical tips should be considered.
J Neurosurg Case Lessons
January 2025
Neurosurgery Clinic, Birgunj, Nepal.
Background: A 71-year-old male presented with weakness of the right upper limb and headache for the past 3 months. Brain magnetic resonance imaging (MRI) with contrast showed a left frontal space-occupying lesion, suggestive of a high-grade malignancy. Awake craniotomy with complete excision of the lesion was performed under immunofluorescence guidance.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, Siena, Italy.
Objectives: To assess the lung involvement in patients with Still's disease, an inflammatory disease assessing both children and adults. To exploit possible associated factors for parenchymal lung involvement in these patients.
Methods: A multicentre observational study was arranged assessing consecutive patients with Still's disease characterized by the lung involvement among those included in the AIDA (AutoInflammatory Disease Alliance) Network Still's Disease Registry.
J Invasive Cardiol
January 2025
Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; NHC Key Laboratory of Ischemic Heart Diseases; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences; National Clinical Research Center for Interventional Medicine, Shanghai, China.
Objectives: The ValveClamp system (Hanyu Medical Technology) is a novel transcatheter edge-to-edge repair (TEER) system designed for ease of operation; however, there is a lack of data on its application in secondary mitral regurgitation (SMR). The authors report the mid-term outcomes of TEER using the ValveClamp system in SMR.
Methods: The study prospectively analyzed consecutive severe SMR patients who underwent transapical ValveClamp implantation at 10 Chinese centers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!