A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Auto-Rectify Network for Unsupervised Indoor Depth Estimation. | LitMetric

Single-View depth estimation using the CNNs trained from unlabelled videos has shown significant promise. However, excellent results have mostly been obtained in street-scene driving scenarios, and such methods often fail in other settings, particularly indoor videos taken by handheld devices. In this work, we establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth. Our fundamental analysis suggests that the rotation behaves as noise during training, as opposed to the translation (baseline) which provides supervision signals. To address the challenge, we propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning. The significantly improved performance validates our motivation. Towards end-to-end learning without requiring pre-processing, we propose an Auto-Rectify Network with novel loss functions, which can automatically learn to rectify images during training. Consequently, our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset. We also demonstrate the generalization of our trained model in ScanNet and Make3D, and the universality of our proposed learning method on 7-Scenes and KITTI datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2021.3136220DOI Listing

Publication Analysis

Top Keywords

auto-rectify network
8
depth estimation
8
network unsupervised
4
unsupervised indoor
4
indoor depth
4
estimation single-view
4
single-view depth
4
estimation cnns
4
cnns trained
4
trained unlabelled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!