Alzheimer's disease (AD), the most common form of dementia worldwide, is a mixed proteinopathy (β-amyloid, tau and other proteins). Classically defined as a clinicopathological entity, AD is a heterogeneous, multifactorial disorder with various pathobiological subtypes showing different forms of cognitive presentation, currently referred to as the Alzheimer spectrum or continuum. Its morphological hallmarks are extracellular β-amyloid (amyloid plaques) and intraneuronal tau aggregates forming neurofibrillary tangles and neurites, vascular amyloid deposits (cerebral amyloid angiopathy), synapse and neuronal loss as well as neuroinflammation and reactive astrogliosis, leading to cerebral atrophy and progressive mental/cognitive impairment (dementia). In addition to "classical" AD, several subtypes with characteristic regional patterns of tau pathology have been segregated that are characterized by distinct clinical features, differences in age, sex distribution, disease duration, cognitive status, APOE genotype, and biomarker levels. In addition to four major subtypes based on the distribution of tau pathology and brain atrophy (typical, limbic predominant, hippocampal sparing, and minimal atrophy), several other clinical variants (non-amnestic, corticobasal, behavioral/dysexecutive, posterior cortical variants, etc.) have been identified. These heterogeneous AD variants are characterized by different patterns of key neuronal network destructions, in particular the default-mode network that is responsible for cognitive decline. Other frequent age-related co-pathologies, e.g., cerebrovascular lesions, Lewy and TDP-43 pathologies, hippocampal sclerosis, or argyrophilic grain disease, essentially influence the clinical picture and course of AD, and can challenge our understanding of this disorder including the threshold and causal relevance of each individual pathology. Unravelling the clinico-morphological heterogeneity among the AD spectrum entities is important for better elucidation of the pathogenic mechanisms affecting the aging brain that may enable a broader diagnostic coverage of AD as a basis for implementing precision medicine approaches and for developing preventive and ultimately disease-modifying therapies for this devastating disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00702-021-02449-2 | DOI Listing |
Expert Rev Proteomics
January 2025
Skolkovo Institute of Science and Technology, Moscow, Russian Federation.
Introduction: Identifying early risks of developing Alzheimer's disease (AD) is a major challenge as the number of patients with AD steadily increases and requires innovative solutions. Current molecular diagnostic modalities, such as cerebrospinal fluid (CSF) testing and positron emission tomography (PET) imaging, exhibit limitations in their applicability for large-scale screening. In recent years, there has been a marked shift toward the development of blood plasma-based diagnostic tests, which offer a more accessible and clinically viable alternative for widespread use.
View Article and Find Full Text PDFWorld J Clin Cases
January 2025
Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China.
Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Neprilysin (NEP), a zinc-dependent membrane-bound metallopeptidase, regulates various bioactive peptides, particularly in kidneys, vascular endothelium, and the central nervous system. NEP's involvement in metabolizing natriuretic peptides, insulin, and enkephalins makes it a promising target for treating cardiovascular and Alzheimer's diseases. Several NEP inhibitors, such as sacubitril and omapatrilat, have been approved for clinical use, which inhibit NEP activity to prolong the bioactivity of beneficial peptides, thereby exerting therapeutic effects.
View Article and Find Full Text PDFFront Neurosci
December 2024
Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.
View Article and Find Full Text PDFEClinicalMedicine
August 2024
Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom.
Background: Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed. Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and generalizability impede translation to the clinic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!