Purpose: High frequency of cataracts and the requirements of new European Union regulations for medical devices require the availability of preclinical models to adequately evaluate anterior lens capsule dyes before their use in patients. Herein, we describe an ex vivo method to quantifiably evaluate the macroscopic and microscopic staining effectiveness of anterior lens capsule dyes using porcine eyes.
Methods: Commercially available trypan blue-based products or physiological saline solution (negative control) was injected into porcine eyes. Anterior pole and lens (after extraction) were macroscopically photographed, and the images were quantitatively analyzed. Lenses were histologically processed, and the staining intensity microscopically was semiquantified.
Results: Macroscopic evaluation of the anterior pole revealed bluish staining of the anterior capsule; however, this coloring cannot be macroscopically discerned after lens extraction. Quantitative image analyses showed significant (P < 0.01) staining of the lens capsule compared to the negative control, but not significant (P > 0.05) between the products tested. Quantitative analysis of dying on lens images could not be performed. Microscopic semiquantification of the capsule staining intensity allows us to appreciate differences between products.
Conclusions: The described method is a quick and useful tool for macroscopic evaluation by surgeons to choose an anterior capsule staining for use during everyday surgeries, and a more specific microscopic evaluation also allows us to determine the effectiveness and usefulness of these products.
Translational Relevance: This method satisfies preclinical effectiveness evaluations required by European Union regulations and complements the safety and toxicity evaluations that new products must guarantee before they enter the market and are used in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685404 | PMC |
http://dx.doi.org/10.1167/tvst.10.14.17 | DOI Listing |
Int J Mol Sci
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression.
View Article and Find Full Text PDFRetina
October 2024
Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Purpose: The research investigates the efficacy of hydroxypropyl methylcellulose (HPMC) treatment in facilitating the development of compact water droplets on the rear surface of synthetic lenses with capsule imperfections during the process of fluid-air exchange.
Method: This study examined four patients with intraocular lens (IOL) implants and posterior capsule defects who experienced the formation of dense water droplets on the posterior surface following fluid-air exchange. When this occurrence obstructs fundus visualization during surgery, it is recommended to suspend the surgical procedure.
Health Phys
January 2025
Division of Vision Research for Environmental Health, Medical Research Institute and Department of Ophthalmology, Kanazawa Medical University, Kahoku, Japan.
Electromagnetic radiation energy at millimeter wave frequencies, typically 30 GHz to 300 GHz, is ubiquitously used in society in devices for telecommunications; radar and imaging systems for vehicle collision avoidance, security screening, and medical equipment; scientific research tools for spectroscopy; industrial applications for non-destructive testing and precise measurement; and military and defense applications. Understanding the biological effects of this technology is essential. We have been investigating ocular responses and damage thresholds comparing various frequencies using rabbit eyes and dedicated experimental apparatus.
View Article and Find Full Text PDFPurpose: To observe and explore the correlation between visual outcomes and intraocular lens (IOL) stability after tri-focal IOL implantation in eyes with high myopia.
Methods: Patients with highly myopic cataract (axial length > 26 mm) were enrolled in this prospective study. Thirty-one eyes (31 patients) received implantation of a trifocal IOL (AcrySof IQ PanOptix TFNT00).
J Ophthalmol
December 2024
Department of Optics & Optometry & Vision Sciences, University of Valencia, Valencia, Spain.
This study aims to analyze the prevalence and severity of posterior capsule opacification (PCO) and glistening in a new hydrophobic biaspheric monofocal intraocular lens (IOLs) 24 months after implantation. By means of a ambispective, observational, case-control design, a total of 297 eyes from 200 cataract surgery patients were included in the study (118 females and 82 males; mean age: 72.31 ± 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!