Objective: Hepatoblastoma is the most common liver tumor. Recent research has found that long non-coding (lnc)RNAs are involved in multiple types of cancers, but the potential mechanism of lncRNA MIR210HG in hepatoblastoma remains unknown. The present study explored the molecular mechanism of MIR210HG in hepatoblastoma progression.

Methods: The cell counting kit-8 was used to detect cell viability, and Transwell assays assessed cell migration and invasion. Luciferase reporter assays showed the relationship between MIR210HG and microRNA (miR)-608 and between miR-608 and forkhead box O6 (FOXO6). Functional tests were verified by a tumor xenograft model. The expression of MIR210HG, miR-608, FOXO6, E-cadherin, N-cadherin, and vimentin was determined by quantitative reverse transcription polymerase chain reaction and western blotting.

Results: MIR210HG was shown to be highly expressed in hepatoblastoma tissues and cell lines. Knockdown of MIR210HG reduced proliferation, migration, and invasion in liver cancer cells, and suppressed tumor growth . MIR210HG competitively combined with miR-608, and miR-608 decreased FOXO6 expression.

Conclusion: Our study demonstrated that knockdown of MIR210HG inhibits hepatoblastoma development through binding to miR-608 and downregulating FOXO6. Our results provide novel insights for hepatoblastoma treatment involving the MIR210HG-miR608-FOXO6 axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725230PMC
http://dx.doi.org/10.1177/03000605211054695DOI Listing

Publication Analysis

Top Keywords

migration invasion
12
mir210hg
9
long non-coding
8
mir210hg inhibits
8
proliferation migration
8
mir210hg hepatoblastoma
8
mir-608 mir-608
8
knockdown mir210hg
8
hepatoblastoma
7
mir-608
6

Similar Publications

Background: Breast cancer (BC) is a global challenge that affects a large portion of individuals, especially women. It has been suggested that microparticles (MPs) can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. Moreover, MPs are known to elevate in cancer cases.

View Article and Find Full Text PDF

LINC01224 promotes the Warburg effect in gastric cancer by activating the miR-486-5p/PI3K axis.

In Vitro Cell Dev Biol Anim

January 2025

Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.

The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.

View Article and Find Full Text PDF

HSP27/IL-6 axis promotes OSCC chemoresistance, invasion and migration by orchestrating macrophages via a positive feedback loop.

Cell Biol Toxicol

January 2025

Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.

Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration.

View Article and Find Full Text PDF

The chick embryo chorioallantoic membrane (CAM) tumor model is a valuable preclinical model for studying the tumor-colonizing process of serovar Typhimurium. It offers advantages such as cost-effectiveness, rapid turnaround, reduced engraftment issues, and ease of observation. In this study, we explored and validated the applicability of the partially immune-deficient CAM tumor model.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous metastatic lymphoma that can be treated by targeting angiogenesis. Apolipoprotein C1 (APOC1) plays a significant role in the proliferation and metastasis of various malignant tumors; however, its role in DLBCL-particularly its effects on angiogenesis-remains largely unexplored. This study investigates the correlation between APOC1 expression and patient prognosis in DLBCL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!