Borophene has been predicted to have outstanding catalytic activity owing to its extreme electron deficiency and abundant active sites. However, no experimental results have been still reported for borophene application in high-efficiency catalysis. Here, a borophene nanosheet was prepared on a carbon cloth surface via chemical vapor deposition. The boron source is sodium borohydride and the carrier gas is hydrogen gas. The crystal structure of the borophene nanosheet highly matches that of a theoretical α'-borophene nanosheet. Borophene shows good electrocatalytic hydrogen evolution reaction (HER) ability with a 69 mV/dec Tafel slope and good cycling stability in a 0.5 M HSO solution. The enhanced performance is ascribed to an abundant electrocatalytic active area and low resistance of charge transfer, which results from its rich surface active sites. The improvement has been revealed by first-principles calculations, which is originated from their inherent metallicity and abundant electrocatalytic active sites on the nanosheets' surface. Borophene's extraordinarily high activity and stability give rise to extensive investigation of the application of borophene in high-efficiency energy applications such as catalysts and batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c15953 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Belgachia, Kolkata, West Bengal, India.
The study was conducted to detect the occurrence and phenotypic resistance pattern of ESBL-producing Enterobacteriaceae in livestock using docking based analysis to reveal the classes of antibiotics against which ESBL-producers are active. Rectal swabs from healthy cattle (n=100), goats (n=88), pigs (n=66) were collected from backyard farms in Andaman and Nicober island (India). In total, 304 isolates comprising E.
View Article and Find Full Text PDFHosp Pract (1995)
January 2025
Research Design and Biostatistics Core, Sanford Research, Sioux Falls, SD, USA.
Study Objectives: Reversal of warfarin-induced anticoagulation using prothrombin complex concentrate (PCC4) is more rapidly achieved than with traditional methods such as fresh frozen plasma (FFP). In many rural facilities the availability of both FFP and PCC4 has been limited. A tertiary hospital instituted a program to provide PCC4 to rural sites using an air transport team and pharmacy exchange.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guizhou University, State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals, Huaxi, 550025, Guiyang, CHINA.
Clavibacter michiganensis (Cmm), designated as an A2 quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO), incites bacterial canker of tomato, which presently eludes rapid and effective control methodologies. Dense biofilms formed by Cmm shield internal bacteria from host immune defenses and obstruct the ingress of agrochemicals. Even when agrochemicals disintegrate biofilms, splashing and bouncing during application disperse active ingredients away from target sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!