Upregulation of acid sensing ion channels is associated with esophageal hypersensitivity in GERD.

FASEB J

Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.

Published: January 2022

Proton pump inhibitors (PPIs) are the mainstay of therapy for gastroesophageal reflux disease (GERD) but up to 60% of patients have inadequate response to therapy. Acid sensing ion channels (ASICs) play important roles in nociception. This study aimed to investigate whether the increased expression of ASICs results in neuronal hyperexcitability in GERD. Esophageal biopsies were taken from GERD patients and healthy subjects to compare expression of ASIC1 and 3. Next, gene and protein expression of ASIC1 and 3 from esophageal mucosa and dorsal root ganglia (DRG) neurons were measured by qPCR, Western-blot and immunofluorescence in rodent models of reflux esophagitis (RE), non-erosive reflux disease (NERD), and sham operated groups. Excitability of DRG neurons in the GERD and sham groups were also tested by whole-cell patch-clamp recordings. We demonstrated that ASIC1 and 3 expression were significantly increased in patients with RE compared with healthy controls. This correlated positively with symptom severity of heartburn and regurgitation (p < .001). Next, ASIC1 and 3 gene and protein expression in rodent models of RE and NERD were similarly increased in esophageal mucosa as well as T3-T5 DRG neurons compared with sham operation. DRG neurons from RE animals showed hyperexcitability compared with sham group. However, intrathecal injection of ASIC specific inhibitors, PcTx1 and APTEx-2, as well as silencing ASIC1 and 3 genes with specific siRNAs prevented visceral hypersensitivity. Overall, upregulation of ASIC1 and 3 may lead to visceral hypersensitivity in RE and NERD and may be a potential therapeutic target for PPI non-responsive patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715981PMC
http://dx.doi.org/10.1096/fj.202100606RDOI Listing

Publication Analysis

Top Keywords

acid sensing
8
sensing ion
8
ion channels
8
reflux disease
8
expression asic1
8
drg neurons
8
gerd
5
upregulation acid
4
channels associated
4
associated esophageal
4

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Perception of Sour Taste in Subjects with Olfactory Deficits: Role of Myrtle Aromatization.

Nutrients

December 2024

Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SP 8 Monserrato, 09042 Cagliari, Italy.

Background: Sour taste is associated with acid-base homeostasis, which is critical to cell metabolism and health conditions. Vinegar, which contains acetic acid as the main component, is a sour food considered the second most common condiment in Italy.

Objectives: The aim of the study was to assess differences in sourness perception in subjects with olfactory deficits compared to controls and evaluate myrtle aromatization's potential effect in modulating sourness perception in subjects with hyposmia.

View Article and Find Full Text PDF

Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of via Targeting PqsR.

Int J Mol Sci

December 2024

Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.

As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!