Fleshy fruit traits and seed dispersers: which traits define syndromes?

Ann Bot

Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET, CC 34, 4107 Yerba Buena, Tucumán, Argentina.

Published: July 2022

Background And Aims: Fruit traits and their inter-relationships can affect foraging choices by frugivores, and hence the probability of mutualistic interactions. Certain combinations of fruit traits that determine the interaction with specific seed dispersers are known as dispersal syndromes. The dispersal syndrome hypothesis (DSH) states that seed dispersers influence the combination of fruit traits found in fruits. Therefore, fruit traits can predict the type of dispersers with which plant species interact. Here, we analysed whether relationships of fruit traits can be explained by the DSH. To do so, we estimated the inter-relationships between morphological, chemical and display groups of fruit traits. In addition, we tested the importance of each trait group defining seed dispersal syndromes.

Methods: Using phylogenetically corrected fruit trait data and fruit-seed disperser networks, we tested the relationships among morphological, chemical and display fruit traits with Pearson's correlations and phenotypic integration indices. Then, we used perMANOVA to test if the fruit traits involved in the analysis supported the functional types of seed dispersers.

Key Results: Morphological traits showed strong intragroup relationships, in contrast to chemical and display traits whose intragroup trait relationships were weak or null. Accordingly, only the morphological group of traits supported three broad seed disperser functional types (birds, terrestrial mammals and bats), consistent with the DSH.

Conclusions: Altogether, our results give some support to the DSH. Here, the three groups of traits interacted in different ways with seed disperser biology. Broad functional types of seed dispersers would adjust fruit consumption to anatomical limitations imposed by fruit morphology. Once this anatomical filter is sovercome, seed dispersers use almost all the range of variation in chemical and display fruit traits. This suggests that the effect of seed dispersers on fruit traits is modulated by hierarchical decisions. First, morphological constraints define which interactions can actually occur; subsequently, display and composition determine fruit preferences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292605PMC
http://dx.doi.org/10.1093/aob/mcab150DOI Listing

Publication Analysis

Top Keywords

fruit traits
44
seed dispersers
24
traits
16
chemical display
16
fruit
14
functional types
12
seed
10
morphological chemical
8
display fruit
8
types seed
8

Similar Publications

Molecular regulation and domestication of parthenocarpy in cucumber.

Nat Plants

January 2025

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.

Parthenocarpy is a pivotal trait that enhances the yield and quality of fruit crops by enabling the development of seedless fruits. Here we unveil a molecular framework for the regulation and domestication of parthenocarpy in cucumber (Cucumis sativus L.).

View Article and Find Full Text PDF

The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region.

View Article and Find Full Text PDF

A Chromosome level assembly of pomegranate (Punica granatum L.) variety grown in arid environment.

Sci Data

January 2025

Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.

The pomegranate (Punica granatum L.) is an ancient fruit-bearing tree known for its nutritional and antioxidant properties. They originated from the Middle East in regions having large farms including mountainous regions of Al-Baha in Saudi Arabia.

View Article and Find Full Text PDF

Identification, characterization and expression analysis of lineage-specific genes within 'Zhongyoutao 14' peach (Prunus persica).

Gene

January 2025

College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China. Electronic address:

Background: With the development of sequencing technology and the rapid increasing in the number of sequenced genomes, lineage-specific genes (LSGs) have been identified and characterized across various species. Similar to other conserved functional genes, LSGs play a crucial role in biological evolution and development. However, the understanding of LSGs remains limited.

View Article and Find Full Text PDF

Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!