The data included in this article provides additional supporting information on our publication (McGregor et al. [1]) on the review of the natural lattice architecture in human bone and its implication towards titanium (Ti) lattice design for laser powder bed fusion and electron beam powder bed fusion. For this work, X-ray computed tomography was deployed to understand and visualize a Ti-6Al-4V lattice structure manufactured by laser powder bed fusion. This manuscript includes details about the manufacturing of the lattice structure using laser powder bed fusion and computed tomography methods used for analyzing the lattice structure. Additionally, a comprehensive literature review was conducted to understand how lattice parameters are controlled in additively manufactured Ti and Ti-alloy parts aimed at replacing or augmenting human bone. From this literature review, lattice design information was collected and is summarized in tabular form in this manuscript.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8646123PMC
http://dx.doi.org/10.1016/j.dib.2021.107633DOI Listing

Publication Analysis

Top Keywords

powder bed
20
bed fusion
20
lattice design
12
laser powder
12
lattice structure
12
lattice
8
human bone
8
computed tomography
8
literature review
8
powder
5

Similar Publications

This study examined scan speed, hatch distance, and scan rotation angle parameters to determine the effects of the powder bed fusion process on the tensile strength of AlSi10Mg material. The Taguchi L9 experimental design was applied to evaluate the effects of the parameters systematically. The experimental results revealed the importance of the parameters affecting the tensile strength of the AlSi10Mg material.

View Article and Find Full Text PDF

Enteric-coated microcapsules can protect roxithromycin (ROX) from acid hydrolysis enhancing efficacy, solubility, and dissolution rate, representing a promising oral formulation for children and patients with swallowing difficulties. ROX-layered core particles were obtained with polyvinylpyrrolidone (PVP) K30 as the binder and Eudragit L30 D-55 as the coating material using the Wurster process in a fluidized bed processor. The enteric-coated microcapsules were characterized using powder X-ray diffraction, differential scanning calorimetry, and polarized optical microscopy.

View Article and Find Full Text PDF

Zinc is a promising material for biodegradable scaffolds due to its biocompatible nature and suitable degradation rate. However, its low mechanical strength limits its use in load-bearing applications. This study aims to address this challenge by optimizing the process parameters of pure zinc using laser-based powder bed fusion and designing zinc scaffolds with tailored structures.

View Article and Find Full Text PDF

A Numerical Study of Topography and Roughness of Sloped Surfaces Using Process Simulation Data for Laser Powder Bed Fusion.

Materials (Basel)

December 2024

Department of Industrial Engineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.

The simulation of additive manufacturing has become a prominent research area in the past decade. Process physics simulations are employed to replicate laser powder bed fusion (L-PBF) manufacturing processes, aiming to predict potential issues through simulated data. This study focuses on calculating surface roughness by utilizing 3D surface topology extracted from simulated data, as surface roughness significantly influences part quality.

View Article and Find Full Text PDF

Additive manufacturing (AM) methods like powder bed fusion-laser beam (PBF-LB) enable complex geometry production. However, understanding and predicting the microstructural properties of AM parts remain challenging due to the inherent non-homogeneity introduced during the manufacturing process. This study demonstrates a novel approach for 3D microstructure representation and virtual testing of non-homogeneous AM materials using 2d electron backscatter diffraction (EBSD) data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!