Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures , regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670418 | PMC |
http://dx.doi.org/10.3389/fpls.2021.768197 | DOI Listing |
J Fungi (Basel)
December 2024
ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India.
wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by f. sp.
View Article and Find Full Text PDFNew Phytol
December 2024
Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China.
Virus-derived small interfering RNAs (vsiRNAs) play an important role in viral infection by regulating the expression of host genes. At present, research on the regulation of plant primary metabolic pathways by vsiRNAs is very limited. TvsiRNA24 derived from tobacco curly shoot virus (TbCSV) was amplified by reverse transcription polymerase chain reaction, and its target gene NbTPI (triosephosphate isomerase) was verified using reverse transcription quantitative polymerase chain reaction and GFP fluorescence observation.
View Article and Find Full Text PDFStud Mycol
December 2024
Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
The species complex (FLSC) currently comprises 11 phylogenetic species, including accepted names such as , , and , which have mostly been reported in association with citrus and coffee. Many varieties were documented by Wollenweber & Reinking (1935), which is indicative of a wider diversity of species within this group. The lack of type material in some cases, especially for the older names, means that definition by molecular phylogeny is very difficult.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China.
The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by ' asiaticus' (Las). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to Las infection induction were screened, and one gene cloned with higher differential expression level was selected and named . we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins.
View Article and Find Full Text PDFJ Virol
December 2024
Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA.
Unlabelled: transmits Liberibacter asiaticus (CLas) between citrus plants which causes the expression of huanglongbing disease in citrus. flavi-like virus (DcFLV) co-occurs intracellularly with CLas in populations in the field. However, the impact(s) of DcFLV presence on the insect vector and its interaction with the CLas phytopathogen remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!