Cognitive control provides us with the ability to , regulate the locus of attention and ignore environmental distractions in accordance with our goals. Auditory distraction is a frequently cited symptom in adults with attention deficit hyperactivity disorder (aADHD)-yet few task-based fMRI studies have explored whether deficits in cognitive control (associated with the disorder) impedes on the ability to suppress/compensate for exogenously evoked cortical responses to noise in this population. In the current study, we explored the effects of auditory distraction as function of working memory (WM) load. Participants completed two tasks: an auditory target detection (ATD) task in which the goal was to actively detect salient oddball tones amidst a stream of standard tones in noise, and a visual -back task consisting of 0-, 1-, and 2-back WM conditions whilst concurrently ignoring the same tonal signal from the ATD task. Results indicated that our sample of young aADHD ( = 17), compared to typically developed controls ( = 17), had difficulty attenuating auditory cortical responses to the task-irrelevant sound when WM demands were high (2-back). Heightened auditory activity to task-irrelevant sound was associated with both poorer WM performance and symptomatic inattentiveness. In the ATD task, we observed a significant increase in functional communications between auditory and salience networks in aADHD. Because performance outcomes were on par with controls for this task, we suggest that this increased functional connectivity in aADHD was likely an adaptive mechanism for suboptimal listening conditions. Taken together, our results indicate that aADHD are more susceptible to noise interference when they are engaged in a primary task. The ability to cope with auditory distraction appears to be related to the WM demands of the task and thus the capacity to deploy cognitive control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670091 | PMC |
http://dx.doi.org/10.3389/fnhum.2021.771711 | DOI Listing |
Prior research has indicated musicians show an auditory processing advantage in phonemic processing of language. The aim of the current study was to elucidate when in the auditory cortical processing stream this advantage emerges in a cocktail-party-like environment. Participants (n = 34) were aged 18-35 years and deemed to be either a musician (10+-year experience) or nonmusician (no formal training).
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Psychology, University of Lübeck, Lübeck, Germany.
Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand when or how humans can exploit this predictability. Here, we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Dept. of Cognitive Robotics, TU Delft, Delft, Netherlands.
Background: Head-mounted displays can be used to offer personalized immersive virtual reality (IVR) training for patients who have suffered an Acquired Brain Injury (ABI) by tailoring the complexity of visual and auditory stimuli to the patient's cognitive capabilities. However, it is still an open question how these virtual environments should be designed.
Methods: We used a human-centered design approach to help define the characteristics of suitable virtual training environments for ABI patients.
J Exp Psychol Learn Mem Cogn
December 2024
Technical University of Darmstadt, Institute of Psychology.
The goal of the present investigation was to perform a registered replication of Jones and Macken's (1995b) study, which showed that the segregation of a sequence of sounds to distinct locations reduced the disruptive effect on serial recall. Thereby, it postulated an intriguing connection between auditory stream segregation and the cognitive mechanisms underlying the irrelevant speech effect. Specifically, it was found that a sequence of changing utterances was less disruptive in stereophonic presentation, allowing each auditory object (letters) to be allocated to a unique location (right ear, left ear, center), compared to when the same sounds were played monophonically.
View Article and Find Full Text PDFElife
January 2025
Department of Psychology, Queens University, Kingston, Canada.
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!