The deep convective cloud-environment feedback loop is likely important to Titan's global methane, energy, and momentum cycles, just as it is for Earth's global water, energy, and momentum budgets. General circulation models of Titan's atmosphere are unable to explicitly simulate deep convection and must instead parameterize the impact of this important subgrid-scale phenomenon on the model-resolved atmospheric state. The goal of this study is to better quantify through cloud resolving modeling the effects of deep convective methane storms on their environment and to feed that information forward to improve parameterizations in global models. Dozens of atmospheric profiles unstable with respect to deep moist convection are extracted from the global Titan Atmospheric Model (TAM) and used to initialize the cloud-resolving Titan Regional Atmospheric Modeling System (TRAMS). Mean profiles of heating/cooling and moistening/drying of the large-scale environment in TRAMS indicate that Titan's deep convection forces the environment in a manner analogous to Earth: Large-scale subsidence of the environmental air warms and dries the environment, but clouds can also moisten the environment through the detrainment and evaporation of condensate near cloud top. Relative humidity profiles and characteristic convective time scales are derived to guide the tuning of the deep convective parameterization implemented in TAM, as described in a companion paper. The triggering of convection, the dry convective mixing of the planetary boundary layer, and the entrainment of environmental air into rising air parcels are found to be critical to determining whether a deep convective cloud will form. Only profiles with relatively large convective available potential energy (CAPE) and well mixed planetary boundary layers with high relative humidity were found to produce storms. Environments with low level thermal inversions and planetary boundary layers with low relative humidity or rapidly decreasing moisture with height failed to generate deep convection in TRAMS despite positive CAPE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670393PMC
http://dx.doi.org/10.1016/j.icarus.2021.114755DOI Listing

Publication Analysis

Top Keywords

deep convection
16
deep convective
16
relative humidity
12
planetary boundary
12
general circulation
8
titan's atmosphere
8
cloud resolving
8
deep
8
energy momentum
8
environmental air
8

Similar Publications

Large-scale acceleration algorithms for a deep convective physical parameterization scheme on GPU.

PLoS One

January 2025

China Energy Dadu River Hydropower Development Co., Ltd., Chengdu, China.

Early warning of geological hazards requires monitoring extreme weather conditions, such as heavy rainfall. Atmospheric circulation models are used for weather forecasting and climate simulation. As a critical physical process in atmospheric circulation models, the Zhang-McFarlane (ZM) deep convective physical parameterization scheme involves computationally intensive calculations that significantly impact the overall operational efficiency of the model.

View Article and Find Full Text PDF

Transition from multi-year La Niña to strong El Niño rare but increased under global warming.

Sci Bull (Beijing)

December 2024

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.

El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.

View Article and Find Full Text PDF

Persistent but weak magnetic field at the Moon's midstage revealed by Chang'e-5 basalt.

Sci Adv

January 2025

State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late-stage evolution of the lunar magnetic field is poorly constrained, and thus, the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at midlatitude.

View Article and Find Full Text PDF

Antarctic sea ice extent has seen a slight increase over recent decades, yet since 2016, it has undergone a sharp decline, reaching record lows. While the precise impact of anthropogenic forcing remains uncertain, natural fluctuations have been shown to be important for this variability. Our study employs a series of coupled model experiments, revealing that with constant anthropogenic forcing, the primary driver of interannual sea ice variability lies in deep convection within the Southern Ocean, although it is model dependent.

View Article and Find Full Text PDF

Cloud Removal in the Tibetan Plateau Region Based on Self-Attention and Local-Attention Models.

Sensors (Basel)

December 2024

School of Surveying and Geo-Informatics, Shandong Jianzhu University, Fengming Road, Jinan 250101, China.

Optical remote sensing images have a wide range of applications but are often affected by cloud cover, which interferes with subsequent analysis. Therefore, cloud removal has become indispensable in remote sensing data processing. The Tibetan Plateau, as a sensitive region to climate change, plays a crucial role in the East Asian water cycle and regional climate due to its snow cover.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!