Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8677818 | PMC |
http://dx.doi.org/10.1038/s41467-021-27586-w | DOI Listing |
Cell Stem Cell
January 2025
MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China. Electronic address:
Embryo development begins with zygotic genome activation (ZGA), eventually generating blastocysts for implantation. However, in vitro systems modeling the pre-implantation development are still absent and challenging. Here, we used mouse totipotent blastomere-like cells (TBLCs) to develop spontaneous differentiation and blastoid formation systems, respectively.
View Article and Find Full Text PDFNat Cell Biol
November 2024
Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
Aggregates of stem cells can break symmetry and self-organize into embryo-like structures with complex morphologies and gene expression patterns. Mechanisms including reaction-diffusion Turing patterns and cell sorting have been proposed to explain symmetry breaking but distinguishing between these candidate mechanisms of self-organization requires identifying which early asymmetries evolve into subsequent tissue patterns and cell fates. Here we use synthetic 'signal-recording' gene circuits to trace the evolution of signalling patterns in gastruloids, three-dimensional stem cell aggregates that form an anterior-posterior axis and structures resembling the mammalian primitive streak and tailbud.
View Article and Find Full Text PDFHum Reprod
November 2024
Department of Philosophy and Moral Science, Ghent University, Ghent, Belgium.
The current article provides an ethical reflection on the moral status of the human embryo, which is a crucial factor in determining permissible actions involving embryos and the extent of their protection. It advocates for the extension of the research period for embryos to 28-days post fertilization. It also states that integrated embryo-like structures (ELSs) should not currently be given the same moral status as natural embryos.
View Article and Find Full Text PDFNat Protoc
January 2025
Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The embryonic and extraembryonic tissue interactions underlying human embryogenesis at implantation stages are not currently understood. We have generated a pluripotent stem cell-derived model that mimics aspects of peri-implantation development, allowing tractable experimentation otherwise impossible in the human embryo. Activation of the extraembryonic lineage-specific transcription factors GATA6 and SOX17 (hypoblast factors) or GATA3 and TFAP2C (encoding AP2γ; trophoblast factors) in human embryonic stem (ES) cells drive conversion to extraembryonic-like cells.
View Article and Find Full Text PDFNat Cell Biol
October 2024
Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Gastruloids are a powerful in vitro model of early human development. However, although elongated and composed of all three germ layers, human gastruloids do not morphologically resemble post-implantation human embryos. Here we show that an early pulse of retinoic acid (RA), together with later Matrigel, robustly induces human gastruloids with posterior embryo-like morphological structures, including a neural tube flanked by segmented somites and diverse cell types, including neural crest, neural progenitors, renal progenitors and myocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!