Ischemic and traumatic insults to the central nervous system account for most serious acute and fatal brain injuries and are usually characterized by primary and secondary damage. Secondary damage presents the greatest challenge for medical staff; however, there are currently few effective therapeutic targets for secondary damage. Homer proteins are postsynaptic scaffolding proteins that have been implicated in ischemic and traumatic insults to the central nervous system. Homer signaling can exert either positive or negative effects during such insults, depending on the specific subtype of Homer protein. Homer 1b/c couples with other proteins to form postsynaptic densities, which form the basis of synaptic transmission, while Homer1a expression can be induced by harmful external factors. Homer 1c is used as a unique biomarker to reveal alterations in synaptic connectivity before and during the early stages of apoptosis in retinal ganglion cells, mediated or affected by extracellular or intracellular signaling or cytoskeletal processes. This review summarizes the structural features, related signaling pathways, and diverse roles of Homer proteins in physiological and pathological processes. Upregulating Homer1a or downregulating Homer1b/c may play a neuroprotective role in secondary brain injuries. Homer also plays an important role in the formation of photoreceptor synapses. These findings confirm the neuroprotective effects of Homer, and support the future design of therapeutic drug targets or gene therapies for ischemic and traumatic brain injuries and retinal disorders based on Homer proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8771115 | PMC |
http://dx.doi.org/10.4103/1673-5374.330588 | DOI Listing |
Healthcare (Basel)
January 2025
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Although the advancements in craniomaxillofacial surgery have been significant, ischemic craniomaxillofacial diseases remain challenging to treat due to insufficient blood supply. Hyperbaric oxygen therapy (HBOT) has emerged as a promising adjunctive treatment, exhibiting the potential to promote angiogenesis, exert anti-inflammatory effects, enhance bone regeneration, and possess antibacterial properties. Numerous studies have demonstrated its efficacy in stimulating healing processes, particularly in cases such as medication-related osteonecrosis of the jaw, osteoradionecrosis, chronic jaw osteomyelitis, and refractory wounds.
View Article and Find Full Text PDFSemin Thromb Hemost
January 2025
Department of Neurology, Sheba Medical Center, Tel Ha'Shomer, Israel.
Coagulation factors are intrinsically expressed in various brain cells, including astrocytes and microglia. Their interaction with the inflammatory system is important for the well-being of the brain, but they are also crucial in the development of many diseases in the brain such as stroke and traumatic brain injury. The cellular effects of coagulation are mediated mainly by protease-activated receptors.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Shenzhen University/The Second People's Hospital of Shenzhen, Shenzhen, China.
Objective: This study aims to evaluate key factors influencing the short-term and long-term prognosis of stroke patients, with a particular focus on variables such as body weight, hemoglobin, electrolytes, kidney function, organ function scores, and comorbidities. Stroke poses a significant global health burden, and understanding its prognostic factors is crucial for clinical management.
Methods: This is a retrospective cohort study based on data from the MIMIC-IV database, including stroke patients from 2010 to 2020.
J Neuroinflammation
January 2025
Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
Central nervous system (CNS) injuries, such as ischemic stroke (IS), intracerebral hemorrhage (ICH) and traumatic brain injury (TBI), are a significant global burden. The complex pathophysiology of CNS injury is comprised of primary and secondary injury. Inflammatory secondary injury is incited by damage-associated molecular patterns (DAMPs) which signal a variety of resident CNS cells and infiltrating immune cells.
View Article and Find Full Text PDFOrthop Surg
January 2025
Department of Orthopaedic, Affiliated ZhongShan Hospital of Dalian University, Dalian, China.
Traumatic osteonecrosis of the femoral head (TONFH) refers to ischemic osteonecrosis is resulting from an acute mechanical interruption of the blood supply to the femoral head. The early diagnosis and optimal treatment have been central focuses of research and continue to undergo improvement. Reliable animal models are essential for advancing research into the treatment of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!