In previous studies elevation of intracellular Ca2+ was shown to cause prolonged reduction of two voltage-dependent K+ currents (IA and ICa2+-K+) across the membrane of the isolated Hermissenda photoreceptor, the type B cell (Alkon et al., 1982b; Alkon and Sakakibara, 1985). Here we show that iontophoretic injection of inositol trisphosphate (IP3), but not inositol monophosphate, also caused prolonged reduction of IA and ICa2+-K+. IP3 injection also caused reduction of a light-induced K+ current (also ICa2+-K+) but did not affect the voltage-dependent Ca2+ current, ICa2+, or the light-induced inward current, INa+, of the type B cell. IP3 injection caused similar effects on the K+ currents of the other type of Hermissenda photoreceptor, the type A cell. INA+ of the type A cell, unlike that of the type B cell, was, however, markedly increased following IP3 injection. The differences of IP3 effects on the two types of photoreceptors may be related to differences in regulation of ionic currents by endogenous IP3 as reflected by clear differences (before injection) in the magnitude of IA, ICa2+-K+, and INa+ between the two cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1329804 | PMC |
http://dx.doi.org/10.1016/S0006-3495(86)83520-2 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.
Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!