AFM imaging and single-molecule recognition of plant cell walls.

Trends Plant Sci

College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Published: April 2022

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tplants.2021.11.010DOI Listing

Publication Analysis

Top Keywords

afm imaging
4
imaging single-molecule
4
single-molecule recognition
4
recognition plant
4
plant cell
4
cell walls
4
afm
1
single-molecule
1
recognition
1
plant
1

Similar Publications

Nano-viscosimetry analysis of membrane disrupting peptide magainin2 interactions with model membranes.

Biophys Chem

January 2025

La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia. Electronic address:

The rapid spread of antibiotic-resistant strains of bacteria has created an urgent need for new alternative antibiotic agents. Membrane disrupting antimicrobial peptides (AMPs): short amino acid sequences with bactericidal and fungicidal activity that kill pathogens by permeabilizing their plasma membrane may offer a solution for this global health crisis. Magainin 2 is an AMP secreted by the African clawed frog (Xenopus laevis) that is described as a toroidal pore former membrane disrupting AMP.

View Article and Find Full Text PDF

Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.

View Article and Find Full Text PDF

Qualitative Research of Composite Graphene Membranes Using the Electric Mode in SEM and AFM.

Materials (Basel)

January 2025

Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland.

The development of new graphene-based materials necessitates the application of suitable material imaging techniques, especially for the identification of defects in the graphene structure and its continuity. For this purpose, it is natural to use one of the main properties of graphene-electrical conductivity. In this work, we prepare a 9 cm large-area monolayer graphene membrane on porous scaffolding sealed with either GO or rGO.

View Article and Find Full Text PDF

Surface Hydrophilic Modification of Polypropylene by Nanosecond Pulsed Ar/O Dielectric Barrier Discharge.

Materials (Basel)

December 2024

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.

Polypropylene (PP) membranes have found diverse applications, such as in wastewater treatment, lithium-ion batteries, and pharmaceuticals, due to their low cost, excellent mechanical properties, thermal stability, and chemical resistance. However, the intrinsic hydrophobicity of PP materials leads to membrane fouling and filtration flux reduction, which greatly hinders the applications of PP membranes. Dielectric barrier discharge (DBD) is an effective technique for surface modification of materials because it generates a large area of low-temperature plasma at atmospheric pressure.

View Article and Find Full Text PDF

Peptidoglycan is the basic structural polymer of the bacterial cell wall and maintains the shape and integrity of single cells. Despite years of research conducted on peptidoglycan's chemical composition, the microscopic elucidation of its nanoscopic architecture still needs to be addressed more thoroughly to advance knowledge on bacterial physiology. Apart from the model organism , ultrastructural imaging data on the murein architecture of Gram-negative bacteria is mostly missing today.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!