Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges.

J Dermatol Sci

St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.

Published: December 2021

Epidermolysis bullosa (EB) is a group of inherited skin and mucosal fragility disorders resulting from mutations in genes encoding basement membrane zone (BMZ) components or proteins that maintain the integrity of BMZ and adjacent keratinocytes. More than 30 years have passed since the first causative gene for EB was identified, and over 40 genes are now known to be responsible for the protean collection of mechanobullous diseases included under the umbrella term of EB. Through the elucidation of disease mechanisms using human skin samples, animal models, and cultured cells, we have now reached the stage of developing more effective therapeutics for EB. This review will initially focus on what is known about blister wound healing in EB, since recent and emerging basic science data are very relevant to clinical translation and therapeutic strategies for patients. We then place these studies in the context of the latest information on gene therapy, read-through therapy, and cell therapy that provide optimism for improved clinical management of people living with EB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdermsci.2021.11.004DOI Listing

Publication Analysis

Top Keywords

epidermolysis bullosa
8
current topics
4
topics epidermolysis
4
bullosa pathophysiology
4
pathophysiology therapeutic
4
therapeutic challenges
4
challenges epidermolysis
4
bullosa group
4
group inherited
4
inherited skin
4

Similar Publications

Junctional epidermolysis bullosa caused by loss-of-function variants in genes encoding the skin basement membrane proteins laminin 332, type XVII collagen, or integrin α6β4 affects patients from birth with severe blistering, eventually leading to scarring and early lethality. In this study, we have optimized a previously published junctional epidermolysis bullosa-knockout mouse model with weekly tamoxifen intraperitoneal injections, resulting in a more controllable and severe model. Owing to the titratable dosing, this model now recapitulates both early and advanced stages of the human disease, strengthening its use in therapeutic studies.

View Article and Find Full Text PDF

Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa.

Nat Commun

January 2025

National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.

Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood.

View Article and Find Full Text PDF

A spatiotemporal and machine-learning platform facilitates the manufacturing of hPSC-derived esophageal mucosa.

Dev Cell

January 2025

Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA. Electronic address:

Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure.

View Article and Find Full Text PDF

Chronic wounds and injuries remain a substantial healthcare challenge, with significant burdens on patient quality of life and healthcare resources. Mesenchymal stromal cells (MSCs) present an innovative approach to enhance tissue repair and regeneration in the context of wound healing. The intrinsic presence of MSCs in skin tissue, combined with their roles in wound repair, ease of isolation, broad secretory profile, and low immunogenicity, makes them especially promising for treating chronic wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!