Characterization of novel cellulose nanofibril and phenolic acid-based active and hydrophobic packaging films.

Food Chem

Food Science and Human Nutrition, School of Food and Agriculture, University of Maine Orono, Maine 04469, USA. Electronic address:

Published: April 2022

Cellulose nanofibril (CNF) is a natural biodegradable biopolymer with excellent mechanical and barrier properties. However, it is susceptible to moisture-induced deterioration of its properties. Attachment of phenolic acids can improve its hydrophobicity and provide additional active functionalities such as antioxidant properties. In this study, CNF films were esterified to vanillic and syringic acid through two different reaction mechanisms. The films were investigated for evidence of modification, hydrophobicity, mechanical properties, crystallinity, thermal stability, and antioxidant properties. Results indicate that esterification with vanillic and syringic acids imparted antioxidant activity to CNF films, with a significantly higher ABTS scavenging activity (76 ± 18%) when compared to control CNF films (30 ± 6%). Similarly, esterification of phenolic acids significantly improved the hydrophobicity of the films with a water contact angle of 94 ± 3° when compared to control CNF films (46 ± 5°). Covalent attachment of phenolic acids can improve hydrophobicity while providing additional functionality to CNF important for food packaging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.131773DOI Listing

Publication Analysis

Top Keywords

cnf films
16
phenolic acids
12
cellulose nanofibril
8
attachment phenolic
8
acids improve
8
improve hydrophobicity
8
antioxidant properties
8
vanillic syringic
8
compared control
8
control cnf
8

Similar Publications

This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.

View Article and Find Full Text PDF

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

This study aimed to develop eco-friendly multifunctional nanocellulose (NC) hybrid films with tailored properties for versatile applications including packaging and photovoltaics. Hybrid films composed by cellulose nanocrystals (CNC) and carboxymethylated cellulose nanofibrils (CNF) were produced at various mass ratio (CNC - 100:0 to 0:100). Montmorillonite clay (MTM) was incorporated (50 % by mass) into the CNC:CNF films.

View Article and Find Full Text PDF

Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs.

View Article and Find Full Text PDF

Pectin blended with cellulose nanofiber (CNF) sourced from wood pulp has excellent potential for modified atmosphere packaging (MAP), as demonstrated with refrigerated or sliced fruits enclosed in parchment coated with pectin-CNF composites. Addition of sodium borate (NaB) augments the antioxidant capacity of the composite, most likely through the generation of unsaturated pectic acid units. Packaging materials coated with pectin-CNF-NaB composites demonstrate better humidity regulation in refrigerated spaces over a 3-week period relative to uncoated controls (50% less variation), with improved preservation of strawberries as well as a reduction in the oxidative browning of sliced apples.

View Article and Find Full Text PDF

Thin and Flexible PANI/PMMA/CNF Forest Films Produced via a Two-Step Floating Catalyst Chemical Vapor Deposition.

Materials (Basel)

November 2024

Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece.

In this paper, we explore a straightforward two-step method to produce high-purity, vertically aligned multi-walled carbon nanofibres (MWCNFs) via chemical vapor deposition (CVD). Two distinct solutions are utilized for this CVD method: a catalytic solution consisting of ferrocene and acetonitrile (ACN) and a carbon source solution with camphor and ACN. The vapors of the catalytic solution inserted in the reaction chamber through external boiling result in a floating catalyst CVD approach that produces vertically aligned CNFs in a consistent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!