Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality.

J Plant Physiol

Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain; R&D Department, APC Europe S.L., Granollers, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain. Electronic address:

Published: January 2022

The upcoming climate change presents a great challenge for plant growth and development being extremes temperatures among the major environmental limitations to crop productivity. Understanding the repercussions of these extreme temperatures is of high importance to elaborate future strategies to confront crop damages. Tomato plants (Solanum lycopersicum L.) are one of the most cultivated crops and their fruits are consumed worldwide standing out for their organoleptic characteristics and nutritional value. Tomato plants are sensitive to temperatures below 12 °C and above 32 °C. In this study, Micro-Tom cultivar was used to evaluate the effects of extreme temperatures on the plant of tomato and the fruit productivity and quality from the stressed plants, either exposed to cold (4 °C for three nights per week) or heat (32 °C during the day, seven days per week) treatments. Total productivity and the percentage of ripe fruits per plant were evaluated together with foliar stress markers and the contents of photosynthetic pigments and tocochromanols. Fruit quality was also assessed determining lycopene contents, total soluble solids, total acidity and ascorbate contents. High temperatures altered multiple physiological parameters indicating a moderate stress, particularly decreasing fruit yield. As a response to this stress, plants enhanced their antioxidant contents both at leaf and fruit level. Low temperatures did not negatively affect the physiology of plants with similar yields as compared to controls, suggesting chilling acclimation. Both high and low temperatures, but most particularly the former, increased total soluble solids contents indicating that temperature control may be used as a strategy to modulate fruit quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2021.153581DOI Listing

Publication Analysis

Top Keywords

tomato plants
12
fruit quality
12
extreme temperatures
8
total soluble
8
soluble solids
8
low temperatures
8
temperatures
7
plants
6
fruit
6
contents
5

Similar Publications

Gamma-aminobutyric acid (GABA) functions as an inhibitory neurotransmitter which blocks the impulses between nerve cells in the brain. Due to the increasing awareness about the health promoting benefits associated with GABA, it is also artificially synthesized and consumed as a nutritional supplement by people in some regions of the world. Though among the fresh vegetables, tomato fruits do contain a comparatively higher amount of GABA (0.

View Article and Find Full Text PDF

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.

View Article and Find Full Text PDF

Bacteriophages (phages) are being investigated as potential biocontrol agents for the suppression of bacterial diseases in cultivated crops. Jumbo bacteriophages, which possess genomic DNA larger than 200 kbp, generally have a broader host range than other phages and therefore would be useful as biocontrol agents against a wide range of bacterial strains. Thus, the characterization of novel jumbo phages specific for agricultural pathogens would be of importance for the development of phage biocontrol strategies.

View Article and Find Full Text PDF

Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!