Physiological and transcriptomic analyses reveal the threat of herbicides glufosinate and glyphosate to the scleractinian coral Pocillopora damicornis.

Ecotoxicol Environ Saf

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.

Published: January 2022

The amino acid metabolism-related herbicides glufosinate and glyphosate are used worldwide and have flowed into the oceans, threatening the marine organisms. In the present study, physiological activities and transcriptomic profiles of the scleractinian coral Pocillopora damicornis and symbiotic Symbiodiniaceae were determined during a 48 h-exposure to the two herbicides with the final concentration of 10 μmol L. Coral samples were collected at 0, 12, 24, and 48 h after exposure to determine symbiont density, chlorophyll content, as well as activities of superoxide dismutase (SOD), catalase (CAT), nitric oxide synthetase (NOS) and phenoloxidase (PO), and the caspase-3 levels, and the samples collected at 24 h were employed in the transcriptomic analysis. Specifically, the symbiont densities did not change significantly in response to the two herbicides, while the chlorophyll content increased significantly at 24 h post glufosinate exposure. SOD and CAT activities in the coral host increased significantly at 12 h after glufosinate and glyphosate exposure, while the activity of NOS in symbionts decreased significantly at 48 h after glufosinate exposure. Caspase-3 levels in the coral host declined significantly at 24 h after exposure to the two herbicides. In the transcriptomic analysis, glufosinate triggered the expression of genes related to the response to stimuli and immunoregulation in the coral host, and suppressed the expression of genes related to coral nitrogen-related metabolism, symbiont cell cycle, and response to nutrient levels. Furthermore, glyphosate activated the expression of genes involved in coral calcification and symbiont nutrient export and suppressed the expression of genes involved in coral meiosis and symbiont cell communication. These results suggest that although the coral-Symbiodiniaceae symbiosis is not disrupted, short-term glufosinate and glyphosate exposures alter several essential physiological processes including metabolism, calcification, and meiosis in the coral host, as well as the cell cycle and nutrient export in the symbiont. SUMMARY: Glufosinate and glyphosate herbicide exposures can disturb several essential physiological processes, including metabolism, calcification, and meiosis in the coral host as well as the cell cycle and nutrient export in the symbiont, threating the survival of scleractinian corals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.113074DOI Listing

Publication Analysis

Top Keywords

glufosinate glyphosate
20
coral host
20
expression genes
16
cell cycle
12
nutrient export
12
coral
11
glufosinate
8
herbicides glufosinate
8
scleractinian coral
8
coral pocillopora
8

Similar Publications

Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.

Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.

View Article and Find Full Text PDF

Unraveling the mechanisms of multiple resistance across glyphosate and glufosinate in Eleusine indica.

Pestic Biochem Physiol

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

The herbicides glyphosate and glufosinate are commonly used in citrus and sugarcane orchards in Guangxi Province, China, wherein the C plant Eleusine indica (L.) Gaertn. is known to be a dominant weed species.

View Article and Find Full Text PDF

Industrial hemp biomass negatively affected by herbicide drift from corn and soybean herbicides.

Sci Rep

November 2024

Former Department of Agronomy and Horticulture, University of Nebraska-Lincoln, West Central Research, Extension and Education Center, North Platte, NE, 69101, USA.

The establishment of industrial hemp (Cannabis sativa L.) fields near row crops has raised concerns about the potential adverse effects of herbicide drift on hemp production. This study examined hemp susceptibility to drift of herbicides registered for use in corn and/or soybeans.

View Article and Find Full Text PDF

Comparative cytotoxicity and mitochondrial disruption in H9c2 cardiomyocytes induced by common pesticides.

Chemosphere

November 2024

Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Chronic exposure to pesticides is believed to be associated with various human diseases, including cardiovascular diseases. However, the mechanisms by which pesticides lead to cardiovascular diseases remain unclear. In our study, we selected the following commonly used pesticides as typical examples: the herbicides glyphosate (GLY) and glufosinate ammonium (GLA); the insecticides imidacloprid (IMI) and thiamethoxam (THM); and the fungicides pyraclostrobin (PYR) and azoxystrobin (AZO).

View Article and Find Full Text PDF

Genome-wide association study reveals the genetic basis of rice resistance to three herbicides.

Front Plant Sci

October 2024

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China.

Crop resistance to herbicides is crucial for agricultural productivity and sustainability amidst escalating challenges of weed resistance. Uncovering herbicide resistant genes is particularly important for rice production. In this study, we tested the resistance to three commonly used herbicides: glufosinate, glyphosate and mesotrione of 421 diverse rice cultivars and employed genome-wide association studies (GWAS) to unravel the genetic underpinnings of resistance to these three herbicides in rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!