The amino acid metabolism-related herbicides glufosinate and glyphosate are used worldwide and have flowed into the oceans, threatening the marine organisms. In the present study, physiological activities and transcriptomic profiles of the scleractinian coral Pocillopora damicornis and symbiotic Symbiodiniaceae were determined during a 48 h-exposure to the two herbicides with the final concentration of 10 μmol L. Coral samples were collected at 0, 12, 24, and 48 h after exposure to determine symbiont density, chlorophyll content, as well as activities of superoxide dismutase (SOD), catalase (CAT), nitric oxide synthetase (NOS) and phenoloxidase (PO), and the caspase-3 levels, and the samples collected at 24 h were employed in the transcriptomic analysis. Specifically, the symbiont densities did not change significantly in response to the two herbicides, while the chlorophyll content increased significantly at 24 h post glufosinate exposure. SOD and CAT activities in the coral host increased significantly at 12 h after glufosinate and glyphosate exposure, while the activity of NOS in symbionts decreased significantly at 48 h after glufosinate exposure. Caspase-3 levels in the coral host declined significantly at 24 h after exposure to the two herbicides. In the transcriptomic analysis, glufosinate triggered the expression of genes related to the response to stimuli and immunoregulation in the coral host, and suppressed the expression of genes related to coral nitrogen-related metabolism, symbiont cell cycle, and response to nutrient levels. Furthermore, glyphosate activated the expression of genes involved in coral calcification and symbiont nutrient export and suppressed the expression of genes involved in coral meiosis and symbiont cell communication. These results suggest that although the coral-Symbiodiniaceae symbiosis is not disrupted, short-term glufosinate and glyphosate exposures alter several essential physiological processes including metabolism, calcification, and meiosis in the coral host, as well as the cell cycle and nutrient export in the symbiont. SUMMARY: Glufosinate and glyphosate herbicide exposures can disturb several essential physiological processes, including metabolism, calcification, and meiosis in the coral host as well as the cell cycle and nutrient export in the symbiont, threating the survival of scleractinian corals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2021.113074 | DOI Listing |
Food Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.
Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
The herbicides glyphosate and glufosinate are commonly used in citrus and sugarcane orchards in Guangxi Province, China, wherein the C plant Eleusine indica (L.) Gaertn. is known to be a dominant weed species.
View Article and Find Full Text PDFSci Rep
November 2024
Former Department of Agronomy and Horticulture, University of Nebraska-Lincoln, West Central Research, Extension and Education Center, North Platte, NE, 69101, USA.
The establishment of industrial hemp (Cannabis sativa L.) fields near row crops has raised concerns about the potential adverse effects of herbicide drift on hemp production. This study examined hemp susceptibility to drift of herbicides registered for use in corn and/or soybeans.
View Article and Find Full Text PDFChemosphere
November 2024
Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Chronic exposure to pesticides is believed to be associated with various human diseases, including cardiovascular diseases. However, the mechanisms by which pesticides lead to cardiovascular diseases remain unclear. In our study, we selected the following commonly used pesticides as typical examples: the herbicides glyphosate (GLY) and glufosinate ammonium (GLA); the insecticides imidacloprid (IMI) and thiamethoxam (THM); and the fungicides pyraclostrobin (PYR) and azoxystrobin (AZO).
View Article and Find Full Text PDFFront Plant Sci
October 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Crop resistance to herbicides is crucial for agricultural productivity and sustainability amidst escalating challenges of weed resistance. Uncovering herbicide resistant genes is particularly important for rice production. In this study, we tested the resistance to three commonly used herbicides: glufosinate, glyphosate and mesotrione of 421 diverse rice cultivars and employed genome-wide association studies (GWAS) to unravel the genetic underpinnings of resistance to these three herbicides in rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!