Purpose: In current guidelines, neurological prognostication after cardiopulmonary resuscitation is based on a multimodal approach bundled in algorithms. Biomarkers are of particular interest because they are unaffected by interpretation bias. We assessed the predictive value of serum neurofilament light chains (NF-L) in patients with a shockable rhythm who received cardiopulmonary resuscitation, and evaluated the predictive value of a modified algorithm where NF-L dosage is included.

Methods: All patients who were included participated in the randomized ISOCRATE trial. NF-L values 48 h after ROSC were compared for patients with a good (Cerebral Performance Category (CPC) 1 or 2) and a poor prognosis (CPC 3 to 5 or death). The benefit of adding NF-L dosage to the current guideline algorithm was then assessed for NF-L thresholds of 500 and 1,200 pg/ml as previously described.

Results: NF-L was assayed for 49 patients. In patients with good versus those with poor outcomes, median NF-L values at 48 h were 72 ± 78 and 7,755 ± 9,501 pg/ml respectively (P < 0.0001; AUC [95 %CI] = 0.87 [0.74;0.99]). The sensitivity of the modified ESICM/ERC 2021 algorithm after adding NF-L with thresholds of 500 and 1,200 pg/ml was 0.74 (CI 95% 0.51-0.88) and 0.68 (CI 95% 0.46-0.86), respectively, versus 0.53 (CI 95% 0.32-0.73) for the unmodified algorithm. In three instances the specificity was 1.

Conclusion: High NF-L plasma levels 48 h after cardiac arrest was significantly associated with a poor outcome. Adjunction to the current guideline algorithm of an NF-L assay with a 500 pg/ml threshold 48 h after cardiac arrest provided the best sensitivity compared to the algorithm alone, while specificity remained excellent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2021.12.009DOI Listing

Publication Analysis

Top Keywords

neurofilament light
8
cardiopulmonary resuscitation
8
nf-l dosage
8
nf-l values
8
values 48 h
8
patients good
8
nf-l
7
patients
6
accuracy neuro-prognostication
4
neuro-prognostication algorithms
4

Similar Publications

Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.

Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.

View Article and Find Full Text PDF

Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity.

View Article and Find Full Text PDF

A growing amount of data has implicated the gene in the risk for Alzheimer's disease (AD), neurodegeneration, and accelerated aging. No studies have investigated the relationship of rs2075650 ('650 on the structural complexity of the brain or plasma markers of neurodegeneration. We used a comprehensive approach to quantify the impact of '650 on brain morphology and multiple cortical attributes in cognitively unimpaired (CU) individuals.

View Article and Find Full Text PDF

In early-stage Alzheimer's disease (AD) amyloid-β (Aβ) deposition can induce neuronal hyperactivity, thereby potentially triggering activity-dependent neuronal secretion of phosphorylated tau (p-tau), ensuing tau aggregation and spread. Therefore, cortical excitability is a candidate biomarker for early AD detection. Moreover, lowering neuronal excitability could potentially complement strategies to reduce Aβ and tau buildup.

View Article and Find Full Text PDF

Substantia nigra degeneration in spinocerebellar ataxia 2 and 7 using neuromelanin-sensitive imaging.

Eur J Neurol

January 2025

Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France.

Objective: Spinocerebellar ataxias (SCA) are neurodegenerative diseases with widespread lesions across the central nervous system. Ataxia and spasticity are usually predominant, but patients may also present with parkinsonism. We aimed to characterize substantia nigra pars compacta (SNc) degeneration in SCA2 and 7 using neuromelanin-sensitive imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!